Conversions    
 
  Probabilités    
 
  Statistiques    
 
  révisions 1   
 
  révisions 2   
 
  Units   
 
  home  
 
  ask us  
 


Courbes
paramétrées

En coordonnées
cartésiennes



Exemples



En coordonnées
polaires



Exemples




© The scientific sentence. 2010



Calculus III: parametric equations
Cycloid




1. Parametric equations for the cycloid




A cycloid is the curve traced by a point on a circle as it rolls along a straight line.

NM = ON

A moving point on the circle goes from O(0,0) to M(x,y). It describes the arc NM of length equal to a θ .

The coordinates x and y of the point M are:

x = ON - MH = aθ - a sin θ
y = CN - CH = a - a cos θ

so the parametric equations for the cycloid are:

x = a (θ - sin θ)
y = a(1 - cos θ)



1.1. Area under an arch of a cycloid

The the parametric equations of the cycloid , we get the corresponding derivatives :

dx = a (dθ - cos θ dθ)
dy = a sin θ dθ


with 0 ≤ θ ≤ 2π

The area under the arch is:

0 y dx = ∫0 a(1 - cos θ) a (dθ - cos θ dθ) =
a20 (1 - cos θ)2 dθ =
a20 ((3/2)θ - 2 sin θ + (1/2) sin θ cos θ) dθ = 3 π a2

so the area under an arch is:

A = 3 π a2



1.2. Arch length of the cycloid

S = ∫0 [(dx/dθ)2 + (dy/dθ)2]1/2 dθ =
= ∫0 a[2 - 2 cos θ]1/2 dθ = = ∫0 2a |sin(θ/2)| dθ =
= 2∫0π 2a sin(θ/2) dθ = 8 a

so the arc length of one arch of a cycloid is:

S = 8 a



2. The inverted cycloid


Rotated through 180o, we get the inverted cycloid, an intersting curbe in Physics.

The inverted cycloid is the curve of fastest descent under gravity. We can prove this by using the Lagrangian formalism.






  


Google
  Web ScientificSentence

 

SVT
|
chimie labs
|
Physics and Measurements
|
Probability & Statistics
|
Combinatorics - Probability
|
Chimie
|
Optics


© Scientificsentence 2013. All rights reserved.