Constants  
 
  Diff. equations  
 
  Hilbert space  
 
  HandS Pictures  
 
  Pauli matrices  
 
  home  
 
  ask us  
 

  CGC  
 
  Units   
 
  Jacobians  
 
  Angular momenta  
 
  Elliptic coordinates  
 

 

Quantum Mechanics



   Schrodinger equation


   Quantum Mechanics



   Propagators : Pg




Quantum Simple Harmonic
Oscillator QSHO




Quantum Mechanics
Simulation With GNU Octave




© The scientific sentence. 2010

Rotation in Quantum Mechanics



1. 3D Rotation of the frame (x,y,z) matrices

1.1. Around z-axis

We consider the rotation of the frame (x, y, z) to 
the new one (x', y' z'). The coordinate x becomes 
x', y becomes y' and z remains inchanged z = z'.



x' = oA + AB     (1)
x/oA = oc/oA =  cos θ then oA = x/cos θ 

The angle (A,P,B) is equal to the angle θ 
because the triangles oAC and aAB are similar. 
Ax'/AP = AB/AP = sin θ. 

We have also: 
AP = y - AC = y - x tg θ. The relationship (1) becomes:
 x' = x/cos θ + AP sin θ = x/cos θ + (y - x tg θ) sin θ = 
 x/cos θ + y sin θ - x sin2 θ/cos θ =  y sin θ + x cosθ

 Thus 
 x' = x cosθ + y sin θ
 
 Now
 y' = PB = AP cos θ = (y - x tg θ)cos θ = 
 y cos θ - x sin θ
 

x' = x cosθ + y sin θ
y' = - x sin θ + y cos θ 
z' = z


The related matrix is:


1.2. Around x-axis

In this case, y takes the place of x, and y the 
place of z and x remains the same, we get then:

y' = y cosθ + z sin θ
z' = - y sin θ + z cos θ 
x' = x 
Or


x' = x
y' = y cosθ + z sin θ
z' = - y sin θ + z cos θ 


The related matrix is:



1.3. Around y-axis

In this case, y takes the place of x, and y the 
place of z and x remains the same, we get then:

z' = z cosθ + x sin θ
x' = - z sin θ + x cos θ 
y' = y
Or


x' =  x cos θ - z sin θ
y' = y
z' = x sin θ + z cosθ 


The related matrix is:


2. Vector position 3D Rotation matrices

2.1.. Around z-axis


We have :
||r'|| = ||r|| = r
x = r cos φ  and y = r sin φ.

x' = r' cos(φ + θ) = r cos (φ + θ) = r cos φ cosθ - r sinφ sin θ = 
x cosθ - y sin θ

y' = r' sin(φ + θ) = r sin (φ + θ) = r sin φ cosθ + r cos φ sin θ = 
y cosθ + x sin θ = x sin θ + y cosθ 
z' = z

Therefore:

x' = x cosθ - y sin θ
y' = x sin θ + y cosθ 
z' = z


The related matrix is:


2.2. Around y-axis

z takes the place of x and x the place y, so:

z' = z cosθ - x sin θ
x' = z sin θ + x cosθ 
y' = y


x' = x cosθ + z sin θ
y' = y
z' = - x sin θ + z cosθ 


The related matrix is:

2.3. Around x-axis

y takes the place of x, and z the place pf y so:
y' = y cosθ - z sin θ
z' = y sin θ + z cosθ 
x' = x


x' = x
y' = y cosθ - z sin θ
z' = y sin θ + z cosθ 


The related matrix is:

Remark: RFrame (θ) = RVector (- θ)  

The related matrices rotating a vector by an 
infinitesimal angle ε are:




3. Vector infinitesimal rotation

3.1 Infinitesimal translation

Let t(a) a linear translation  that moves a vector r to 
the vector r' by the vector "a". the magnitude of the 
vector r does not change. We do not add vectors, but 
translate a vector. We have r' = t(r) =  r + a centred 
at the origin O. Its magnitude doesn't change and remains 
"r". But centred at the new origin "a", we have 
r = r'(a) = r'(o) - a (as we translate the frame (o,r)).



The operator translation T acts as follows:

T(a)(|ψ(x)>) = |ψ(x - a)>

It moves a wave function centred at the origin to 
be centred at the point "a".

Writing the Taylor series in operator form yields:
ψ(x - a) = ψ(x) - a(d/dx) ψ(x) + (1/2!)a2 d2/dx2 ψ(x) + ...
That is:
T(a) ψ(x)>  = [Σ (-a)n(1/n!)an dn/dxn ] ψ(x)  = 
exp {- a d/dx} ψ(x) 

Then:
T(a) = exp {- a d/dx} 

with p = - i  d/dx, we obtain:
T(a) = exp {- ia p/} 

T(a) = exp {- a d/dx} 
T(a) = exp {- ia p/} 

At the second order, we have the case of 
an infinitesimal translation:

T(ε) = 1 - iεp/

The momentum operator p is seen as  
the generator of translation.

3.2 Infinitesimal rotation



An infinitesimal rotation dθ rotates a vector 
r to a vector r' = r + dr = r + dθ u x r. 
As for a translation, this rotation lets the magnitude of 
the vector r unchanged. The infinitesimal rotation 
transforms the vector r to the vector r - dr at the 
point of the end of the rotation dr. Therefore:

R(dθ) = exp {- i dr.p/}  = exp {- i (dθ u x r).p/} = 
exp {- i (dθ u.r x p/} = exp {- i (dθ u.L/}

u" is a unit vector, so: u.L = L.

R(dθ) = exp {- i (dθ L/}
L = r x p 

L = r x p the orbital angular momentum. Indeed,
It is the generator of rotations.

R(θ) = exp {- i (Σdθ u.L/} = 
exp {- i θ u.L/}

3.3 Example: Infinitesimal rotation about z-axis

A rotation of a vector r (x,y,z) about an 
axis by an angle θ is equivalent to 
a translation of its components. For 
example, about z-axis (x,y,z) becomes (x',y',z'): 

x' = x cosθ - y sin θ
y' = x sin θ + y cosθ 
z' = z

For an infinitesimal rotation dθ, we have:

x' = r cos (θ + dθ) = x - y dθ 
y' = r sin(θ + dθ) = x dθ + y
z' = z

Then:

R(z, dθ) = (x - y dθ, x dθ + y,0) = 
T(- y dθ)(x) . T(+x dθ)(y) . T(0)(z) = 
exp {- i(- y dθ) px/} . exp {- i x dθ py/} . exp {- i 0 pz/}
= exp {- i dθ/ (- y px + x py)} = exp {- i dθLz} = 
Where Lzis the z-component of the angular 
momentum L.

3.3 Generalization of the Rotation Operator


Taking account of the spin S  of the 
system, we can generalize the orbital angular 
momentum  to the operator J that is, therefore, 
defined as the generator of rotations for any 
wave function of a quanum system.


R(dθ) = exp {- i dθ J/}


This expression of J can be used along with the properties 
of a rotation (or infinitesimal rotation) to set 
the properties of the J's such as commutations.

  


chimie labs
|
Physics and Measurements
|
Probability & Statistics
|
Combinatorics - Probability
|
Chimie
|
Optics
|
contact
|


© Scientificsentence 2010. All rights reserved.