Quantum Mechanics

Schrodinger equation

Quantum Mechanics

Propagators : Pg

Quantum Simple Harmonic
Oscillator QSHO

Quantum Mechanics
Simulation With GNU Octave

# Jacobians

Jacobians are very useful to determine the elements of integrals when transforming them from a system coordinates to another.

### 1. 1D Jacobian

In 1D problems we are used to a simple change of variables, e.g. from x to u

∫ f(x) dx (a → b ) = ∫ f(x(u)) (dx/du) du ( α → β)

dx/du is one-dimension Jacobian

### 2. 2D Jacobian

Transformation from (x,y) to (u,v):
∫∫(R) f(x,y) dxdy = ∫∫(R') f(x(u,v),y(u,v)) (∂(x,y)/∂(u,v) dudv
∂(x,y)/∂(u,v) is the 2D Jacobian

∂(x,y)/∂(u,v) =
|∂x/∂u ∂x/∂v|
|∂y/∂u ∂y/∂v|
=
|xu xv |
|yu yv |
= xuyv - xvyu

The Jacobian is the determinant of the Jacobian Matrix

Example:
Area of circle of radius R:

x = r cos θ
y = r sin θ

dxdy → dr dθ

A = ∫∫(S) dxdy = ∫∫(S') (Jacobian)drdθ

Jacobian =
|xr xθ |
|yr yθ |
=
|cos θ -r sinθ |
|sin θ r cos θ |
= r

Thereore:

A = ∫∫ (Jacobian)drdθ = ∫∫ r drdθ = (1/2)R2 2π = πR2

### 3. 3D Jacobian

x = x(u, v, w), y = y(u, v, w), and z = z(u, v, w)
Transforms vlume dxdydz to dudvdw.
∫∫∫ (V) f(x,y,z) dxdydz =
∫∫∫ (V')F(u,v,w) ∂(x,y,z)/∂(u,v,w) dudvdw

The Jacobian ∂(x,y,z)/∂(u,v,w) is equal to:

|xu xv xw|
|yu yv yw|
|zu zv zw|

Example:

Transformation of volume elements between Cartesian and spherical polar coordinate systems: dxdydz → dudvdw = drdθdφ
x = r sinθcosφ
y = r sinθsinφ
x = r cosθ

xu = ∂x/∂r = sinθcosφ
xθ = ∂x/∂θ = r cosθcosφ
xφ = ∂x/∂φ = - r sinθsinφ

....

The Jacobian is:

∂(x,y,z)/∂(u,v,w) =
|sinθcosφ r cosθcosφ - r sinθsinφ|
|sinθsinφ r cosθsinφ r sinθcosφ|
|cosθ - r sinθ 0| =
r2 sin θ

Therefore:
The volume element is:
dV = dxdydz = (Jacobian) drdθdφ = r2 sin θ drdθdφ

Volume element:
V = dxdydz = (Jacobian) drdθdφ = r2 sin θ drdθdφ

 chimie labs | Physics and Measurements | Probability & Statistics | Combinatorics - Probability | Chimie | Optics | contact |