Constants  
 
  Units   
 
  Jordan's lemma   
 
  Delta function  
 
  Young's Modulus  
 
  Fourier Transforms  
 
  home  
 
  ask us  
 

 
Contents

A sigle wave


Superposition of waves



© The scientific sentence. 2010

Fourier series & Fourier Transforms




1. Orthogonal and orthonormal functions

1.1. Definitions

Two functions φ1 and φ2 are orthogonal on an interval [a, b] if the integral of their product is null. That is:
∫ φ1(x) φ2(x) dx = 0 on the interval [a, b] These functions are orthonormal if: ∫ φ1(x) φ2(x) dx = 1 on the interval [a, b] If they are not, we can force them to be so by introducing the weight function w(x) as follows: ∫ w(x) φ1(x) φ2(x) dx = 1 on the interval [a, b] A set of functionsn}, where n is an integer, is orthogonal on the intereval [a, b] if: ∫ φn(x) φm(x) dx = 0 on the interval [a, b] for n ≠ m A set of functionsn}, where n is an integer, is orthonormal on the intereval [a, b] if:
∫ φn(x) φm(x) dx = 1 on the interval [a, b] for n = m
That is the set {φn} is normalized to 1: ∫ φn(x) 2 dx = 1 The integral ∫ φn(x) 2 dx is written as: ||φn(x)||2, and is called the norm of the function φn. This norm is different from 1 in the case of the set is not normalized to 1.

1.2. Examples

1.2.1. Example 1
The tho following functions are orthogonal on the interval [-2, + 2] φ1(x) = x
φ2(x) = x2
Indeed:
∫ φ1(x) φ2(x) dx = ∫ x. x2 dx = ∫ x3 dx = x4/4 [-2, + 2] = 0 The set (p/π)(1/2) {cos nπx/p, sin mπx/p} is orthonormal on the interval [- π + π]; The numbers "n" and "m" are integers, and "p" is real. Indeed: For orthogonality: ∫ cos nπx/p cos mπx/p dx = 0 (E1) ∫ sin nπx/p sin mπx/p dx = 0 (E2) ∫ cos nπx/p sin mπx/p dx = 0 (E3) For normality: ∫ cos2 nπx/p dx = p (E4) ∫ sin2 nπx/p dx = p (E5) Proof: We know: cos (a + b) = cos a cos b - sin a sin b (1) cos (a - b) = cos a cos b + sin a sin b (2) sin (a + b) = sin a cos b + cos a sin b (3) sin (a - b) = sin a cos b - cos a sin b (4) Adding (1) and (2) gives: cos a cos b = [cos (a + b) + cos (a - b)]/2 Subtracting (2) and (1) gives: sin a sin b = [cos (a - b) - cos (a + b)]/2 Adding (3) and (4) gives: sin a cos b = [sin (a + b) + sin (a - b)]/2 Setting a = b in (1) gives: cos (2a) = cos2 a - sin2 a = cos2 a - [1 - cos2 a] = 2 cos2 a - 1. Then: cos2 a = [1 + cos (2a)]/2 And: sin2 a = 1 - cos2 a = 1 - [1 + cos (2a)]/2 = [1 - cos (2a)]/2 1. ∫ cos nπx/p cos mπx/p dx = ∫ [cos (π/p)(n + m)x + cos (π/p)(n - m)x]/2 dx = (1/2) ∫ [cos (π/p)(n + m)x] + (1/2) ∫ cos (π/p)(n - m)x] dx = (1/2) (p/π(n + m)) [sin(π/p)(n + m)x] + (1/2) p/π(n - m) [sin(π/p)(n - m)x]. Integration on [- p, + p] yields: (1/2) (p/π) { [ sin π(n + m)]/(n + m) + [sin π(n + m)]/(n + m) + [sin π(n - m)]/(n - m) + [sin π(n - m)]/(n - m)} = (1/2) (p/ π) {2[sin π(n + m)]/(n + m) + 2[sin π(n - m)]/(n - m)} = 0 The equation (E1) is proved. In the case of n = m, the first term is 0, and the second term to 2 as: (sin x)/x tends to 1, we have [sin π(n - m)]/(n - m)} = π [sin π(n - m)]/π(n - m)} tends to π and then: ∫ cos2 nπx/p dx = p The equation (E4) is proved. The set (1/p)1/2 { cos nπx/p, sin mπx/p } is normalozed to 1. 2. ∫ sin nπx/p sin mπx/p dx = ∫ [cos (π/p)(n - m)x - (π/p)cos (n + m)x]/2 dx = (1/2) (p/π(n - m)) [sin(π/p)(n - m)x] - (1/2) p/π(n + m) [sin(π/p)(n + m)x]. Integration on [- p, + p] yields: (1/2) (p/ π) {[sin π(n - m)]/(n - m) + [sin π(n - m)]/(n - m) - [sin π(n + m)]/(n + m) - [sin π(n + m)]/(n + m)} = (1/2) (p/ π) {2[sin π(n - m)]/(n - m)} = (p/ π) {[ sin π(n - m)]/(n - m)} = 0 The equation (E2) is proved. In the cas of n = m, since (sin x)/x tends to 1, we have: ∫ sin2 nπx/p dx = p The equation (E5) is then proved. 3. ∫ cos nπx/p sin mπx/p dx = (1/2) {∫ sin (n + m)πx/p + sin (n - m)πx/p dx} = (1/2) {- ( p/(n + m)π) cos (n + m)πx/p - ( p/(n + m)π) cos (n - m)πx/p } = - (p/π)(1/2) { [cos (n + m)πx/p ]/(n + m) - [cos (n - m)πx/p]/(n + m)}. Integration on [- p, + p] yields: ∫ cos nπx/p sin mπx/p dx = - (p/π)(1/2) { [cos (n + m)π]/(n + m) - cos (n + m)π]/(n + m) - [cos (n - m)π]/(n + m) - [cos (n - m)π]/(n + m)} = 0. The equation (E3) is then proved.

2. Fourier series

2.1. Definition

Is it possible to extend any function f defined on the interval [a, b] in series of the orthonormal set {φn}?; that is: f(x) = ∑ cn φn (x) n: 0 → ∞. The response is yes. Here is the proof: Integrating f(x) φm (x) from - a to + b yields: ∫ f(x) φm (x) dx = ∫ ∑ cn φn (x) φm (x) dx = ∑ cn ∫ φn (x) φm (x) dx Since the set is orthonormal, the integral of the product ∫ φn (x) φm (x) is 0 for n ≠ m and 1 if n = m. Hence: ∑ cn ∫ φn (x) φm (x) dx = cn ∫ φn2 (x) dx = cn || φn2 (x)||. Therefore: cn = ∫f(x)φn(x)dx/||φn(x)||2 n : 0 → ∞ and x : a → b.

2.2. Particular case: Fourier series

Let's take the orthonormal set (p/π)(1/2) {cos nπx/p, sin mπx/p} on the interval [- π + π]. Any function f defined on the interval [- p, + p] can be expended as: f(x) = ∑ an cos nπx/p + bn sin mπx/p n: 0 → ∞. with: an = ∫f(x) cos nπx/p dx/||cos2 nπx/p(x)|| = ∫f(x) cos nπx/p dx/(p), and bn = ∫f(x) sin nπx/p dx/||sin2 nπx/p(x)|| = ∫f(x) sin nπx/p dx/(p) f(x) = ∑ an cos nπx/p + bn sin mπx/p With the following coefficients: an = (1/p) ∫f(x) cos nπx/p dx, and bn = (1/p) ∫f(x) sin nπx/p dx n : 0 → ∞, and x : - p → + p.

Particular cases:

If the function f is even, that is f(- x) = f(x), then the product f(x) cos nπx/p is also even, and f(x) sin nπx/p is odd; therefore: an = (2/p) ∫f(x) cos nπx/p dx, and bn = (1/p) ∫f(x) sin nπx/p dx = 0 n : 0 → ∞, and x : 0 → + p. Hence: f(x) = ∑ an cos nπx/p If the function f is odd, that is f(- x) = - f(x), then the product f(x) cos nπx/p is also odd, and f(x) sin nπx/p is even; therefore: an = (1/p) ∫f(x) cos nπx/p dx = 0 , and bn = (2/p) ∫f(x) sin nπx/p dx n : 0 → ∞, and x : 0 → + p. Hence: f(x) = ∑ bn sin nπx/p To recap: f is even: f(x) = ∑ an cos nπx/p, with: an = (2/p) ∫f(x) cos nπx/p dx n : 0 → ∞, and x : 0 → + p. That is the cosine series. f is odd: f(x) = ∑ bn sin nπx/p, with: bn = (2/p) ∫f(x) sin nπx/p dx n : 0 → ∞, and x : 0 → + p. That is the sine series.

2. Complex Fourier series

We know that cos x = [eix + e- ix]/2, and sin x = [eix - e- ix]/2i Substituting these expressions in Fourier series of the function f defined on the interval [- p, + p] yields: f(x) = ∑ an cos nπx/p + bn sin mπx/p = (1/2) ∑ an [einπx/p + e- inπx/p] - i bn [einπx/p - e- inπx/p] = (1/2) ∑ [an - i bn] einπx/p + [an + i bn] e- inπx/p] = ∑ cn einπx/p + c- n e- inπx/p Therefore: f(x) = ∑ cn einπx/p + c-n e- inπx/p With: cn = [an - i bn]/2, and its conjugate: c- n = [an + i bn]/2 The expressions of cn and c- n are found as follows: I = ∫ f(x) e -imπx/p dx = ∑ cn ∫ ei(n - m)πx/p dx + c- n ∫ e- i(n + m)πx/p dx x : - p → +p I = ∑ cn (p/i(n - m)π) [ei(n - m)π - e- i(n - m)π ] + c- n (ip/(n + m)π) [e- i(n + m)π - ei(n + m)π] = ∑ cn (2p/(n - m)π) [sin ((n - m)π)] - c- n ( - 2 p/(n + m)π) [sin((n + m)π)] = 0 if n≠ m. If n = m , we have, according to (sin x)/x = 1 when x tends to 0: I = cn (2p) - c- n ( - p/n )π) [sin((2n)π)] = cn (2p) + 0 = 2p cn Therefore: cn = (1/2p) ∫ f(x) e- inπx/p dx Similarly, J = ∫ f(x) e+ imπx/p dx = ∑ cn ∫ ei(n + m)πx/p dx + c- n ∫ e- i(n - m)πx/p dx x : - p → +p J = ∑ cn (p/i(n + m)π) [ei(n + m)π - e- i(n + m)π ] + c- n (ip/(n - m)π) [e- i(n - m)π - ei(n - m)π] = ∑ cn (2p/(n + m)π [sin ((n + m)π)] - c- n ( - 2 p/(n - m)π) [sin((n - m)π)] = 0 if n≠ m. If n = m , we have, according to (sin x)/x = 1 when x tends to 0: J = cn (2p/2n)π [sin ((2n)π)] - c- n ( - 2p) = 0 + 2p c- n Therefore: c-n = (1/2p) ∫ f(x) e+ inπx/p dx We recap as follows: f is any function defined on the interval [- p, + p] f(x) = ∑ cn einπx/p + c-n e- inπx/p With the coefficients: cn = (1/2p) ∫ f(x) e - inπx/p dx, and c-n = (1/2p) ∫ f(x) e + inπx/p dx n : 0 → ∞, and x : - p → + p. Remark that, here, the number "n" can be negative as well. So we can write: f is any function defined on the interval [- p, + p] f(x) = ∑ cn exp{ i(nπ/p)x } With the coefficient: cn = (1/2p) ∫ f(x) exp{ - i(nπ/p)x } dx, n : - ∞ → + ∞, and x : - p → + p.

3. Fourier Transforms

We can write: S = ∑ f(n) = ∑ f(n) 1 = ∑ f(n) [(n + 1) - n ] = ∑ f(n) dn, therefore the sum S can be written as S = ∫ f(n) dn. The above equations: f(x) = ∑ cn exp{ i(nπ/p)x } cn = (1/2p) ∫ f(x) exp{ - i(nπ/p)x } dx, n : - ∞ → + ∞, and x : - p → + p. can be then written as: f(x) = ∫ c(n) exp{ i(nπ/p)x } dn c(n) = (1/2p) ∫ f(x) exp{ - i(nπ/p)x } dx, n : - ∞ → + ∞, and x : - p → + p. let's change "n/p" into "x" and "πx" into "k"; with F(x) = p c(n), the above equations become then: f(k) = ∫ F(x) exp{ ikx} dx F(x) = (1/2π) ∫ f(k) exp{ - ikx } dk, x : - ∞ → + ∞, and k : - pπ → + pπ. The number "p" is real. It can take the value ∞. We have then: f(k) = ∫ F(x) exp{ ikx} dx F(x) = (1/2π) ∫ f(k) exp{ - ikx } dk, x : - ∞ → + ∞, and k : - ∞ → + ∞ F(x) is the Fourier Transform of f(k). f(k) is the inverse transform of F(x).

©: The scientificsentence.net. 2007.


  
Google
Web
ScientificSentence
 



chimie labs
|
scientific sentence
|
java
|
Perl
|
php
|
green cat
|
contact
|


© Scientificsentence 2010. All rights reserved.