CYLINDRICAL COORDINATES


1.The expressions of the components of a vector:


In this system, we have: P = (Px , Py, Pz), or:
P = Pxex + Pyey + Pzez
Where: eρ, eφ and ez are the vector unit in this system; that is they are perpendicular to each other and their magnitude is equal to 1. Remark that that ez stays the same over the z axis. But for eρ and eφ, we do the following calculations: They are in the same plan (yx). Their projections over y and x axis give the vector unit over y and x:

	

- Over y : eρ sin φ + eφ cos φ = ey (1) - Over x : eρ cos φ - eφ sin φ = ex (2) - Over z : ez = ez (3) P can be written as: P = Px[eρ cos φ - eφ sin φ] + Py[eρ sin φ + eφ cos φ] + Pz[ez] P = [Pxcos φ + Py sin φ]eρ + [- Px sin φ + Pycos φ]eφ + Pz[ez] = Pρeρ + Pφeφ + Pzez

2. Unit vectors transformations:

	The related transformation (eρ, eφ, ez) → (eρ, eφ, ez) 
	can be obtained by writing:
	[Pρ, Pφ, Pz] = MATRIX [Px, Py, Pz] and
	therfore inverse the matrix MATRIX to get the coordinates 
	of P in (x, y, z) system from(ρ, φ, z) system.
	Where:
	


We can obtain these transformations just by:
- Multiplying (1) by cosφ
eρ sin φcosφ + eφcos φ = cosφey (4)
- Multiplying (2) by sinφ
eρcos φsinφ - eφ sin φ2 = sinφex (5)
(4) - (5) gives:
eφ = cosφey - sinφex
- Multiplying (2) by cosφ
eρ cos φ2 - eφ sin φcosφ = excosφ (6)
- Multiplying (1) by sinφ
eρ sin φ2 + eφcos φsinφ = eysinφ (7)
(6) + (7) gives:
eρ = excosφ + eysinφ

	Then:
	
	eρ = cosφex + sinφey
	eφ = cosφey - sinφex
	ez  = ez 

3.The Gradiant:

	V(x,y,z) : any vector.
	x = ρ cosφ
	y = ρ sinφ
	z = z 
	The inverse transformation is:
	ρ = [x2 + y2]1/2
	φ = tg-1(x/y) = arctg (x/y)

	We use the relationships:
	tg φ  = y/x
	1 + tg2φ = 1/cos2φ

	The variable x depends on ρ and φ. It follows that:
	∂/∂x = (∂/∂ρ)(∂ρ/∂x) + (∂/∂φ)(∂φ/∂x)
	Then:
	∂ρ/∂x = (1/2) [x2 + y2] - 1/2 . 2.x = x/ρ = cos φ

	∂φ/∂x = ?
	First:
	∂(tgφ)/∂x = [∂(tgφ)/∂φ] φ/∂x = [1 + tg2φ] ∂φ/∂x
	= ∂(y/x)/∂x = - y/x2 =  - tg φ/ρcos φ
	Then: φ/∂x = cos2φ[- tg φ/ρcos φ]= - sin φ/ρ
	Then:
	∂/∂x = (∂/ρ)(cos φ) + (∂/φ)(- sin φ/ρ)
	∂/∂x = cos φ ∂/∂ρ - sinφ/ρ ∂/∂φ
	
	∂/∂y = (∂/∂ρ)(∂ρ/∂y) + (∂/φ)(∂φ/∂y)
	∂ρ/∂y = (1/2) [x2 + y2] - 1/2 . 2.y = y/ρ = sin φ
	∂φ/∂y = cos2φ[∂(tg φ)/∂y ]= (1/x) cos2φ = cos φ/ρ
	Then:
	∂/∂y = (∂/∂ρ)( sin φ) + (∂/∂φ)(cos φ/ρ)
	∂/∂y = sinφ ∂/∂ρ + cos φ/ρ ∂/∂φ
	
	To recap:
	
∂/∂x = cos φ ∂/∂ρ - sinφ/ρ ∂/∂φ ∂/∂y = sinφ ∂/ρ + cos φ/∂ρ ∂/∂φ ∂/∂z = ∂/∂z
From the above figure, we have: ex = eρ cos φ - eφ sin φ ey = eρ sin φ + eφ cos φ ez = ez Then: = ∂/∂x ex + ∂/∂y ey + ∂/∂z ez= [cos φ ∂/∂ρ - sinφ/ρ ∂/∂φ][eρ cos φ - eφ sin φ] + [sinφ ∂/∂ρ + cos φ/ρ ∂/∂φ][eρ sin φ + eφ cos φ ] + [ ∂/∂z][ez] = cos φ ∂/∂ρeρ cos φ - sinφ/ρ ∂/∂φeρ cos φ - eφ sin φcos φ ∂/ρ + eφ sin φsinφ/ρ ∂/∂φ + sinφ ∂/ρeρ sin φ + cos φ/ρ ∂/∂φeρ sin φ + sinφ ∂/ρ eφ cos φ + cos φ/ρ ∂/∂φ eφ cos φ + ∂/∂z ez = ∂/∂ρ eρ + (1/ρ) ∂/∂φ eφ + ∂/∂z ez = ∂/∂ρ eρ + (1/ρ) ∂/∂φ eφ + ∂/∂z ez

4.The Laplacien:

2/∂x2 = 
	[(∂ρ/∂x)(∂/∂ρ) + (∂φ/∂x)(∂/∂φ)] (∂/∂x)(∂/∂ρ) (∂/∂x) = 
	cosφ ∂2/∂ρ2  + (sinφ/ρ2) ∂/∂φ
	(∂/∂φ) (∂/∂x) = - (sinφ) ∂/∂ρ - (cosφ/ρ)∂/∂φ - 
	(sinφ/ρ) ∂2/∂φ2
	Then:
	∂2/∂x2 = (sin2φ/ρ) ∂/∂ρ + 2( cosφsinφ/ρ2) ∂/∂φ + 
	(cos2φ) ∂2/∂ρ2 + 
	(sin2φ/ρ2) ∂2/∂φ22/∂y2 = [(∂ρ/∂y)(∂/∂ρ) + 
	(∂φ/∂y)(∂/∂φ)] (∂/∂y)
	(∂/∂ρ) (∂/∂y) = sinφ ∂2/∂ρ2  - 
	(cosφ/ρ2) ∂/∂φ
	(∂/∂φ) (∂/∂y) =  (cosφ) ∂/∂ρ - (sinφ/ρ)∂/∂φ + 
	(cosφ/ρ) ∂2/∂φ2
	Then:
	∂2/∂y2 = (cos2φ/ρ) ∂/∂ρ - 
	2( cosφsinφ/ρ2) ∂/∂φ + (sin2φ) ∂2/∂ρ2 + 
	(cos2φ/ρ2) ∂2/∂φ22/∂z2  = ∂2/∂z2 

	It follows that:
	
	Δ = (1/ρ) ∂/∂ρ + ∂2/∂ρ2 + (1/ρ2) ∂2/∂φ2 + ∂2/∂z2
	
	

5.The volume element:


The volume element is:

dV = ρdρdφdz

The surface elements are:

ρdφdz eρ
dρdφdz eφ
ρdρdφ ez


6. The divergence of a vector: . A

	We know that:
	  = ∂/∂ρ eρ + (1/ρ) ∂/∂φ eφ +  ∂/∂z ez
	
	And:
	eρ = cosφ ex + sinφ ey
	eφ = - sinφ ex + cosφ ey
	ez  = ez 

	Let A = (Aρ, Aφ, Az)
	 . A =
	[∂/∂ρ eρ + (1/ρ) ∂/∂φ eφ +  ∂/∂z ez] . [Aρ eρ +  Aφ eφ + Az ez] =

	∂Aρ/∂ρ eρ . eρ  + (1/ρ) ∂Aρ/∂φ eφ . eρ +  ∂Aρ/∂z ez . eρ  +
	Aρ eρ . ∂eρ/∂ρ  + (1/ρ)Aρ  eφ . ∂eρ/∂φ  + Aρ  ez . ∂eρ/∂z 
	+ 
	∂Aφ/∂ρ eρ . eφ  + (1/ρ) ∂Aφ/∂φ eφ . eφ +  ∂Aφ/∂z ez . eφ  +
	Aφ eρ . ∂eφ/∂ρ  + (1/ρ) Aφ  eφ . ∂eφ/∂φ  + Aφ ez . ∂eφ/∂z ] 
	+
	∂Az/∂ρ eρ . ez  + (1/ρ) ∂Az/∂φ eφ . ez +  ∂Az/∂z ez . ez  +
	Aρ eρ . ∂ez/∂ρ  + (1/ρ)Az  eφ . ∂ez/∂φ  + Az  ez . ∂ez/∂z 

	We will use:

	∂eρ/∂ρ = 0		∂eρ/∂φ  = eφ		∂eρ/∂z  = 0
	∂eφ/∂ρ = 0		∂eφ/∂φ = - eρ		∂eφ/∂z  = 0
	∂ez/∂ρ = 0		∂ez/∂φ = 0		∂ez/∂z = 0
	
	Then:
	 . A =
	∂Aρ/∂ρ  + 0 +  0 +
	0 + (1/ρ)Aρ + 0
	+ 
	0 + (1/ρ) ∂Aφ/∂φ  + 0 +
	0 + 0  + 0] 
	+
	0 + 0 +  ∂Az/∂z  +
	0 + 0  + 0

	We find then:
	
	 . A = ∂Aρ/∂ρ + (1/ρ)Aρ + (1/ρ) ∂Aφ/∂φ + ∂Az/∂z 
	Or: 
	 . A = (1/ρ)∂(ρ Aρ)/∂ρ + (1/ρ) ∂Aφ/∂φ + ∂Az/∂z 
	

7. The curl of a vector: x A

	We know that:
	 = ∂/∂ρ eρ + (1/ρ) ∂/∂φ eφ +  ∂/∂z ez 
	And:
	eρ = cosφ ex + sinφ ey
	eφ = - sinφ ex + cosφ ey
	ez  = ez 
	
	Let A = (Aρ, Aφ, Az)
	 x  A =
	[∂/∂ρ eρ + (1/ρ) ∂/∂φ eφ +  ∂/∂z ez] x [Aρ eρ +  Aφ eφ + Az ez] =

	∂Aρ/∂ρ eρ x eρ  + (1/ρ) ∂Aρ/∂φ eφ x eρ +  ∂Aρ/∂z ez x eρ  +
	Aρ eρ x ∂eρ/∂ρ  + (1/ρ)Aρ  eφ x ∂eρ/∂φ  + Aρ  ez x ∂eρ/∂z 
	+ 
	∂Aφ/∂ρ eρ x eφ  + (1/ρ) ∂Aφ/∂φ eφ x eφ +  ∂Aφ/∂z ez x eφ  +
	Aφ eρ x ∂eφ/∂ρ  + (1/ρ) Aφ  eφ x ∂eφ/∂φ  + Aφ ez x ∂eφ/∂z  
	+
	∂Az/∂ρ eρ x ez  + (1/ρ) ∂Az/∂φ eφ x ez +  ∂Az/∂z ez x ez  +
	Aρ eρ x ∂ez/∂ρ  + (1/ρ)Az  eφ x ∂ez/∂φ  + Az  ez x ∂ez/∂z 

	We will use:
	
eρ x eρ = 0 eφ x eφ = 0 ez x ez = 0
eρ x eφ = ez eφ x ez = eρ ez x eρ = eφ
∂eρ/∂ρ = 0 ∂eρ/∂φ = eφ ∂eρ/∂z = 0
∂eφ/∂ρ = 0 ∂eφ/∂φ = - eρ ∂eφ/∂z = 0
∂ez/∂ρ = 0 ∂ez/∂φ = 0 ∂ez/∂z = 0
Then: x A = 0 - (1/ρ) ∂Aρ/∂φ ez + ∂Aρ/∂z eφ + 0 + 0 + 0 + ∂Aφ/∂ρ ez + 0 - ∂Aφ/∂z eρ + 0 + (1/ρ) Aφ ez + 0 + - ∂Az/∂ρ eφ + (1/ρ) ∂Az/∂φ eρ + 0 + 0 + 0 + 0 = - (1/ρ) ∂Aρ/∂φ ez + ∂Aρ/∂z eφ + ∂Aφ/∂ρ ez - ∂Aφ/∂z eρ + (1/ρ) Aφ ez - ∂Az/∂ρ eφ + (1/ρ) ∂Az/∂φ eρ = [(1/ρ) ∂Az/∂φ - ∂Aφ/∂z]eρ + [∂Aρ/∂z - ∂Az/∂ρ ]eφ + [(1/ρ) Aφ + ∂Aφ/∂ρ - (1/ρ) ∂Aρ/∂φ] ez We get then: x A = [(1/ρ) ∂Az/∂φ - ∂Aφ/∂z] eρ + [∂Aρ/∂z - ∂Az/∂ρ ] eφ + (1/ρ)[ Aφ + ρ ∂Aφ/∂ρ - ∂Aρ/∂φ] ez Or: x A = [(1/ρ) ∂Az/∂φ - ∂Aφ/∂z] eρ + [∂Aρ/∂z - ∂Az/∂ρ ] eφ + (1/ρ)[ ∂(ρ Aφ)/∂ρ - ∂Aρ/∂φ] ez