Mathematics 5
© The scientific sentence. 2010
|
Mathematics
Conics
1. The simple expression of a conic
The general expression of a conic is written as:
A x2 + B x y + C y2 + D x + E y + F = 0
(1)
The vector position r has the following coordinates in the frame xOy
r = x i + y j
A rotation of an angle θ of the frame xOy yields a new
coordinates for the unit vectors i and j, as well as the
vector position r. We have:
r = x' i' + y' j'
= x'(cos θ i + sin θ j) + y'(-sinθ i + cos θ) j
= (x'cos θ - y'sinθ)i + (x' sin θ + y' cos θ) j
Therefore:
x = x'cos θ - y'sinθ (2)
y = x' sin θ + y' cos θ (3)
The equation (1) becomes:
A (x'cos θ - y'sinθ)2 + B (x'cos θ - y'sinθ)( x' sin θ + y' cos θ) +
C (x' sin θ + y' cos θ)2 + D (x'cos θ - y'sinθ) + E( x' sin θ + y' cos θ) + F = 0
or:
A (x'2cos2 θ - 2 x'y' cos θ sinθ + y'2sin2 θ) +
B (x'2 cos θ sin θ + x'y' cos2 θ +
- x'y'sin2 θ - y'2 sinθ cos θ)+
C (x'2 sin2 θ + y'2 cos2 θ)+
2 x'y' sin θ cos θ)+
D x'cos θ - D y'sinθ +
E x' sin θ + E y' cos θ +
F = 0
or:
x'2[A cos2θ + B cos θ sin θ + C sin2 θ] +
x'y' [- 2 A cos θ sinθ + B cos2 θ - B sin2 θ + 2 C sin θ cos θ]+
y'2[A sin2 θ) - B sinθ cos θ + C cos2 θ] +
x' (D cos θ + E sin θ) +
y'( - D sinθ) + E cos θ) +
F = 0
We can write then:
A' = A cos2θ + B cos θ sin θ + C sin2 θ
B' = - 2 A cos θ sinθ + B cos2 θ - B sin2 θ + 2 C sin θ cos θ
C' = A sin2 θ - B sinθ cos θ + C cos2 θ
D' = D cos θ + E sin θ
E' = - D sinθ) + E cos θ
F' = F
Therefore:
A' x'2 + B' x'y' + C'y'2 + D' x' + E' y' + F' = 0
(4)
The factor of x'y' can be eliminated if B' = 0, so:
- 2 A cos θ sinθ + B cos2 θ - B sin2 θ + 2 C sin θ cos θ = 0
or:
B cos2 θ - B sin2 θ = 2 A cos θ sinθ - 2 C sin θ cos θ
B (cos 2θ) = 2( A - C) sin θ cos θ
B (cos 2θ) = ( A - C) sin 2θ
Thus:
tan 2θ = B/( A - C)
tan 2θ = B/( A - C) (5)
A rotation of the frame xOy by an angle such as tan 2θ = B/( A - C), transforms
the general form of a conic to the simple form (without the product xy)
The equation (4) becomes:
A' x'2 + C'y'2 + D' x' + E' y' + F' = 0
(6)
which is possible to write as X2/α2 +/- Y2 /β2 = 1
2. The related forms of a conic
The equation of an ellipse have to be written as:
x2/a2 + y2 /b2 = 1
To have this, the product A'C' in the equation (6) must be positive.
(A' and C' have the same sign)
The equation of an hyperbola have to be written as:
x2/a2 - y2 /b2 = 1
To have this, the product A'C' in the equation (6) must be negative.
(A' and C' have different signs)
The equation of a parabola have to be written as:
x2 + α x + β y + γ = 0 or
y2 + α x + β y + γ = 0
To have this, the product A'C' in the equation (6) must be null.
(A' or C' are equal to zero)
The are the three criteria to state of the form of the conic.
What is the expression of the product A'C' with respect to the first
coefficients in the equation (1)?
A' = A cos2θ + B cos θ sin θ + C sin2 θ
C' = A sin2 θ - B sinθ cos θ + C cos2 θ
A'C' = A2 sin2 θ) cos2θ
- A B sinθ cos3θ + AC cos4 θ+
AB cos θ sin3 θ - B2 sin2θ cos2 θ +
BC cos3 θsinθ +
AC sin4 θ - BC sin3θ cos θ +
C2 sin2 θ cos2 θ
A'C' = (A2 - B2 + C2)sin2 θ cos2θ
(BC- A B )sinθ cos3θ + AC ( sin4 θ + cos4 θ) +
(AB - BC) cos θ sin3 θ
we have:
sin2 θ cos2θ = sin2 2θ /4
And:
sin4 θ + cos4 θ =
1 - 2 sin2 θ cos2θ =
1 - sin2 2θ /2 =
(1 + cos 2 2θ)/2
And:
(BC - A B) sinθ cos3θ + (AB - BC) cosθ sin3 θ
= (AB - BC) (sin2 θ - cos2θ) sinθ cosθ
= - (AB - BC) (cos2θ - sin2θ)sinθ cosθ
= - (AB - BC) [cos 2θ sin 2θ ] /2
From the equation (5): tan 2θ = B/( A - C) , we have:
(BC - A B) sinθ cos3θ + (AB - BC) cosθ sin3 θ
= - B(A - C) [cos 2θ sin 2θ ] /2 = - B2 [cos2 2θ ] /2
Then:
A'C' = (A2 - B2 + C2)sin2 2θ /4
+ AC (1 + cos 2 2θ)/2 - B2 [cos2 2θ ] /2
A'C' = (A2 - B2 + C2)sin2 2θ /4
+ (AC/2 - B2/2 ) cos 2 2θ + AC/2
4 A'C' = (A2 - B2 + C2)sin2 2θ
+ 2(AC - B2 ) cos 2 2θ + 2AC
= (A2 - B2 + C2)sin2 2θ
+ 2(AC - B2) (1 - sin 2 2θ) + 2AC
= (A2 - B2 + C2)sin2 2θ
+ 2(AC - B2) - 2(AC - B2) sin 2 2θ + 2AC
= (A2 - B2 + C2 - 2AC + 2B2 ) sin 2 2θ + 4AC - 2B2
= ( (A - C)2 + B2 ) sin 2 2θ + 4AC - 2B2
We have:
(A - C)2 + B2 = B2/tan2 2θ + B2
= B2(1 + 1/tan2 2θ) = B2/sin2 2θ
Then:
4 A'C'= B2/sin2 2θ x sin 2 2θ + 4AC - 2B2
= B2 + 4AC - 2B2 = 4AC - B2
Therefore:
- 4A'C' = B2 - 4AC
- 4A'C' = B2 - 4AC
Since B' = 0, we can write:
B'2 - 4A'C' = B2 - 4AC. This distriminant is invariant.
The criteria for the forms of conics from the product A'C', can
be then directly used from the first form of the equation (1), that is
B2 - 4AC, before even proceeding to rotate the frame xOy.
Therefore, for the equation:
A x2 + B x y + C y2 + D x + E y + F = 0
• If B2 - 4AC < 0, the equation represents an ellipse,
• If A = C and B = 0, the equation represents a circle,
• If B2 - 4AC = 0, the equation represents a parabola,
• If B2 - 4AC > 0, the equation represents a hyperbola.
|
|
|