Theorems of anaysis  
 
  inverse function  
 
  geometric derivative  
 
  decay phenomena  
 
  Constants  
 
  Units   
 
  home  
 
  ask us  
 


Calculus I









© The scientific sentence. 2010

Calculus I: Limits

Rules on the evaluation of limits :



1. Limits Properties

If lim f(x) = b and
x → a
lim g(x) = c
x → a

Then:

a)
lim k f(x) = k (
x → a
(lim f(x)) = k b
x → a

b)
lim (f(x) ± g(x)) =
x → a
lim f(x) ±
x → a
lim g(x) = b ± c
x → a

c)
lim f(x) g(x) =
x → a
lim f(x) .
x → a
lim g(x) = b c
x → a

d)
lim f(x)/g(x) =
x → a
lim f(x) /
x → a
lim g(x) = b /c (c≠0)
x → a

e)
lim (f(x))n =
x → a
(lim (f(x)
x → a)n
= bn

f)
lim (f(x))1/n =
x → a
(lim (f(x)
x → a)1/n
= b1/n

with n even integer and b > = 0


g)

If P(x) is a polynomial function of standard form
Σ an xn, we have:

lim P(x) = P(a)
x → a



2. Examples

2.1. Example 1

lim ( 3 - 4 x) = 3 - 4(- 5) = 3 + 20 = 23
x → - 5

2.2. Example 2

lim ( 13 - 4 x) = 13 - 4(5) = - 7
x → 5+

2.3. Example 3

lim 2 x2 - 2 x + 3
x → -1
lim 2 x2 - 2 x + 3 =
x → -1
2 lim x2 - 2 lim x + 3 = 7
x → -1

2.4. Example 4

lim 2 x2/(x - 5) = 2 (1)2/(1 - 5) = 2/(- 4) = - 1/2
x → 1

2.5. Example 5

lim (2 x + 5)6
x → - 5/2
lim (2 x + 5)6 =
x → - 5/2
[lim (2 x + 5) = 06 = 0
x → - 5/2 ]6

2.6. Example 6

lim (2 x + 5)6
x → - 5/2
(lim (2 x + 5) = 06 = 0
x → - 5/2 )6

2.7. Example 7

lim (x - 2)1/2
x → 2

lim (x - 2)1/2
x → 2-
lim (x - 2)1/2 = 0
x → 2+
so
lim (x - 2)1/2
x → 2

2.8. Example 8

   3x2 + 1  x < 0
f(x) =   x - 1  0 < x <= 3
    x + 1  x > 3

lim f(x) = 3 02 + 1 = 1
x → 0-

lim f(x) = 0 - 1 = - 1
x → 0+

lim f(x) ≠
x → 0-
lim f(x)
x → 0+

Therefore:
lim f(x)
x → 0

In addition: f(0) ∄


b)
lim f(x) = 3 - 1 = 2
x → 3-

lim f(x) = 3 + 1 = 4
x → 3+

lim f(x) ≠
x → 3-
lim f(x)
x → 3+

Therefore:
lim f(x)
x → 3

In addition: f(3) = 3 - 1 = 2

3. Exercises

1-
lim (2x - 3)
x → - 4

2-
lim (5 x )
x → 3

3-
lim (2 x + 7)
x → o+

4-
lim (x2 + 1)
x → - 1-

5-
lim 2(x - 4)3
x → - 1

6-
lim 2(x + 3)/(x - 1)
x → 2

7-
lim 7 (x2 - 3)/(x - √3)
x → (√3)-

lim 7 (x2 - 3)/(x - √3)
x → (√3)+

lim 7 (x2 - 3)/(x - √3)
x → √3


8-
P(x) = x3 - x - 4

lim P(x)
x → + 1

Remark P(x) is a polynomial function, so

lim P(x) = P(a)
x → a



9-
lim 2(x3 + 3)/(x3 + 1)
x → 0

10-
lim (x3 + 3)3
x → -1

11-
lim [7 + (x2 - 1)1/2]/(x2 + 3 x + 1)5
x → 0

12-
lim √x
x → 0

13-
lim (x + 1 + (x - 1)2)
x → 1
Evaluate 1+ and 1-.

14-
   x2 - 1  x <= 0
f(x) =   x - 1  0 < x <= 2
    x + 1  x > 2

lim f(x)
x → 0+

lim f(x)
x → 0-

lim f(x)
x → 2+

lim f(x)
x → 2-

lim f(x)
x → 4




  


chimie labs
|
Physics and Measurements
|
Probability & Statistics
|
Combinatorics - Probability
|
Chimie
|
Optics
|
contact
|


© Scientificsentence 2010. All rights reserved.