Calculus II
Contents
Series
Integrals
Definite integrals
Some primitives
Numerical methods
Exercices
© The scientific sentence. 2010
|
|
Calculus II: Integration by Parts
1. Definition:
we start from the result found for derivatives related
to the product of two functions:
(f(x) g(x))' = f'(x) g(x) + f(x) g'(x)
Taking the integral of the two sides, we obtain:
f(x) g(x) = ∫f'(x) g(x) dx + ∫f(x) g'(x) dx
Therefore
∫ g(x) f'(x) dx = f(x) g(x) - ∫f(x) g'(x) dx
∫ g(x) f'(x) dx = f(x) g(x) - ∫ f(x) g'(x) dx
2. Examples
2.1. Example 1
∫ ln(x) dx = ∫ ln(x) 1.dx
f'(x) = 1 , so f(x) = x + cst
g(x) = ln(x), so ln'(x) = 1/x + cst
Therefore
∫ ln(x) dx = x ln(x) - ∫x (1/x)dx =
x ln(x) - x + cst
∫ ln(x) dx = x ln(x) - x + cst
2.2. Example 2
∫ x exp{x} dx
dv = exp{x} dx → v = exp{x}
u = x → du = dx
∫ u dv = uv - ∫ vdu
∫ x exp{x} dx = x exp{x} - ∫ exp{x} dx =
x exp{x} - exp{x} = exp{x}(x - 1) + cst
∫ x exp{x} dx = (x - 1) exp{x} + cst
|
|