theorems of analysis  
 
  L'Hospital's rule  
 
  Integration techniques  
 
  Taylor expansions  
 
  Constants  
 
  home  
 
  ask us  
 

 
      Calculus II

      Contents




© The scientific sentence. 2010

Calculus II: Integration techniques



1. Basic formulas

They come from the differentiation rules.

∫ k f(x) dx = k ∫ f(x) dx 

∫ k dx = k x + const. 

∫ [f(x) ± g(x)] dx = ∫ f(x) dx ± ∫ g(x) dx 

∫ xn dx = xn+1/(n+1) + const;  with n ≠ -1 

∫ sinxdx = - cos x + const. 

∫ cosdx = sinx + const. 

∫ sec2xdx = tanx + const. 

∫ csc2xdx = -cotx + const. 

∫ secx tanx dx = secx + const. 

∫ cscx cotx dx = - cscx + const. 

∫ ex dx = ex + const. 

∫ ax dx = ax/ln a  + const. with a >0 and ≠1.

∫ dx/x = ln |x| + const. 

∫ tang x dx = - ln |cos x| + const.

∫ cot x dx = ln |sin x| + const.

∫ sec x dx = ln |sec x + tan x| + const.

∫ csc x dx = - ln |csc x + cot x| + const.

∫ dx/[a2 - x2]1/2 = arcsin (x/a) + const.

∫ dx/(a2 + x2)= (1/a)arctan (x/a) + const.

∫ dx/x[x2 - a2]1/2 = (1/a)arcsec(x/a) + const.


2. Change of variables

It makes the indefinite integral much easier to evaluate. 
We must write the result in terms of the original variable 
of integration, thereafter.

Example 1

I = ∫x2 dx/(x3 - 1)5 

u = x3 - 1 → du = 3x2 dx, so 

x2 dx = du/3.

Therefore

I = ∫du/3u5 = - (1/12)u-4 + const. 
=  - 1/12(x3  - 1)4 + const. 

		∫x2dx/(x3 - 1)5 = 
	- 1/12(x3 - 1)4 + const.


Example 2

I = ∫ x dx/[1 - x4]1/2

u = x2 → du = 2 x dx, so 

x dx = du/2.

Therefore

I = (1/2)∫ du/[1 - u2]1/2 + const. = 
(1/2)arcsin u + const. = (1/2)arcsin (x2) + const.


		 ∫x dx/[1 - x4]1/2 = 
	(1/2)arcsin (x2) + const.



Example 3

I = ∫  dx/(x1/2 + x1/3)

The smallest number divisible by  2 and 3 is 6, so 
x = u6 → 6 u5 du =  dx, thus

I = ∫  6 u5 du /(u3 + u2) = 
6 ∫ u3 du /(u + 1) 

We have the following polynomial division: 

u3/(u + 1) = u2 - u + 1  - 1/(u + 1)

Therefore

I = 6 [∫ u2du - ∫ u du + ∫ du - ∫ du/(u + 1)]
= 6[u3/3 - u2/2  + u - ln|u + 1|]

= 6 [x1/2/3 - x1/3/2 + x1/6 - ln (x1/6 + 1)] + const.

		∫dx/(x1/2 + x1/3) = 
2x1/2 - 3x1/3 + 6x1/6 - 6ln (x1/6 + 1)] + const.


3. Integration by parts

The integration by parts is based on the inverse of 
the derivative of product of two functions.

The basic formula: 


∫u dv = uv - ∫v du


Example 1

I = ∫ x ex dx

u = x → du = dx 
ex dx = dv → v = ex 

so

I = ∫ u dv =  uv - ∫v du = x ex - ∫ ex dx 
= x ex -  ex + const. 

Example 2

I = ∫ ln x dx

u = ln x → du = dx/x
dx = dv → v = x

so

I = ∫ u dv =  uv - ∫v du = x ln x - ∫ x dx /x
= x ln x - x + const. 

4. Trigonometric integrals

sin and cos
The basic form: 

∫ cosm x sinn x dx 


m or n or both are odd:

Use 
cos2 x + sin2 x = 1, 

Example 
I = ∫ cos3 x sin4 x dx 
cos2 x + sin2 x = 1
d = sin x → du = cos x dx 
I = (1/5)sin5x - (1/7)sin7x + const.

m and n both are even:

Use 
cos2 x = (1/2)[1 + cos(2x)]
sin2 x = (1/2)[1 - cos(2x)]

Example 
I = ∫cos4x sin2 x dx 
= (1/16)x-(1/64)sin(4x)+(1/48)sin3(2x)+const.
sec and tan
∫ tanm x secn x dx 


n even:

Use 
u = tan x 

Example 
I = ∫ tan2 x sec4 x dx 

I = (1/5)tan5x + (1/3)tan3x + const.

m is odd:

Use 
tan2 x += sec2 x - 1, 
u = sec x 

Example 
I = ∫ tan x sec6 x dx 
= (1/6)sec6x + const.

c. m is even and n odd:

Use 
tan2 x += sec2 x - 1, 

Example 
I = ∫ tan2 x sec3 x dx 
= tan x sec3 /4 - tan x sec x /8 - (1/8) ln|sec x + tan x| + const.



----------
Exercices:

Changing variables:
1. ∫ dx/(1 + ex)
2. ∫ sec x dx

By parts:
3. ∫ x2e-x dx
4. ∫ sin x e2x dx
5. ∫ x e2x dx
6. ∫ cosnx dx





















  


chimie labs
|
Physics and Measurements
|
Probability & Statistics
|
Combinatorics - Probability
|
Chimie
|
Optics
|
contact
|


© Scientificsentence 2010. All rights reserved.