theorems of analysis  
 
  L'Hospital's rule  
 
  Integration techniques  
 
  Taylor expansions  
 
  Constants  
 
  home  
 
  ask us  
 

 
      Calculus II

      Contents




© The scientific sentence. 2010

Calculus II: Fundamental Theorem of Calculus
Applications



1.Changing the limits of integration

Changing the bounds of integration results from the change of the variable of integration.

If we want to solve the following definite integral
  b  
  f(x) dx
  a  

and we find that it is easier to do it by changing the variable x into h(x), then dx into h'(x) dx , the integrale becomes

  h(b)  h(b)  
  g(h(x)) h'(x) dx =    g(u) du
  h(a)  h(a)  

with u = h(x).


2. Example

Let the definite integral
  1  
  (2x + 1)2 dx .
  0  

By the change
u = 2 x + 1 = h(x), so
du = 2 dx = h'(x) dx,

the integral becomes :
  3  3 
  (1/2) u2 du = [(1/6) u3]   =  (1/6)[33 - 1] = 13/3
  1  1 


3. Properties

3.1 Even function

If f is even, that is f(- x) = f (x)
in the interval [a, b], we always have:

  b  b  
  f(x) dx = 2    f(x) dx
  a  0  


3.2 Odd function

If f is odd, that is f(- x) = - f (x)
in the interval [a, b], we always have:

  b  
  f(x) dx  =  0
  a  


5. Exercises




  


chimie labs
|
Physics and Measurements
|
Probability & Statistics
|
Combinatorics - Probability
|
Chimie
|
Optics
|
contact
|


© Scientificsentence 2010. All rights reserved.