Calculus II: ∫ sec3(x) dx
0. ∫ sec3(x) dx
I = ∫ sec3(x) dx
1. ∫ sec(x) dx
K = ∫ sec(x) dx
sec(x) = 1/cos(x) = A/B
A = (1 + sin (x))/cos2(x)
B = (1 + sin (x))/cos(x)
dB/dx = [cos2(x) + (1 + sin (x))sin(x)]/cos2(x) =
[(1 + sin (x)]/cos2(x) = A
Then
dB/dx = A = B/cos(x) dx = B sec(x) dx
dB/B = dx/cos(x)
∫ dx/cos(x) = ∫ dB/B = ln|B| + cst.
Therefore
K = ∫ sec(x) dx = ∫ dx/cos(x) = ln|(1 + sin (x))/cos(x)| + cst =
ln|(sec(x) + tan(x))| + cst
K = ∫ sec(x) dx = ln|(sec(x) + tan(x))| + cst
2. ∫ tan(x). sin(x) sec2(x) dx
J = ∫ tan(x). sin(x) sec2(x) dx =
∫ sin2(x) sec3(x) dx =
∫ [1 - cos2(x)] sec3(x) dx =
∫sec3(x) dx - ∫cos2(x) sec3(x) dx
= I - ∫ dx /cos(x) = I - ∫ sec(x) dx = I - K
J = I - K
J = I - K =
∫ tan(x). sin(x) sec2(x) dx =
∫ sec3(x) dx -
∫ sec(x) dx
3. ∫ sec3(x) dx
I = ∫ sec3(x) dx = ∫ sec(x) sec2(x) dx
Let
u = sec(x), so du = sin(x)/cos2(x) dx = sin(x) sec2(x) dx
dv = sec2(x) dx , so v = tan(x)
Therefore
I = ∫ sec(x) sec2(x) dx = ∫ u dv = u v - ∫ v du =
sec(x). tan(x) - ∫ tan(x). sin(x) sec2(x) dx =
sec(x). tan(x) - J
so
I = sec(x). tan(x) - I + K
Threfore
2 I = sec(x). tan(x) + K
I = (1/2) sec(x). tan(x) + (1/2)ln|(sec(x) + tan(x))| + cst
∫ sec3(x) dx =
(1/2) sec(x). tan(x) + (1/2)ln|(sec(x) + tan(x))| + cst
∫ sec3(x) dx =
(1/2) sec(x). tan(x) + (1/2)ln|(sec(x) + tan(x))| + cst
|