Calculus II
Some Series used with Riemann sum
1. Sum of the n first odd integers
Sn = 1 + 3 + 5 + ... + 2n - 1 (n terms)
Sn = 2n - 1 + ... + 3 + 2 + 1
Adding the two equalities yields:
2 Sn = (2n - 1 + 1) + (2n - 3 + 3) + ... + (2n - 3 + 3) + (2n - 1 + 1) =
(2n) + (2n) + ... + (2n) + (2n) = n x (2n) = 2 n2
Therefore
2Sn = 2 n2.
That is
Sn = n2
| | n |
| | | |
Sn | = | Σ | |
(2i - 1)
| = | n2 |
| | i = 1 |
| |
2. Sum of the n first integers
Sn = 1 + 2 + 3 + ... + n - 2 + n - 1 + n
Sn = n + n -1 + n - 2 + ... + 3 + 2 + 1
Adding the two equalities yield:
2 Sn = (n + 1) + (n + 1) + (n + 1) + ... + (n + 1) = n(n + 1)
Therefore
Sn = n (n + 1) /2
| | n |
| | | |
Sn | = | Σ | |
i
| = | n(n + 1)/2 |
| | i = 1 |
| |
3. Sum of the n squered first integers
Sn2 = 12 + 22 + 32 + ... +
(n - 2)2 + (n - 1)2 + n2 .
We have :
(n + 1)3 = n3 + 3 n2 + 3 n + 1
23 - 13 = 3 (1)2 + 3 (1) + 1
33 - 23 = 3 (2)2 + 3 (2) + 1
43 - 33 = 3 (3)2 + 3 (3) + 1
... = ...
(n + 1)3 - n3 = 3 n2 + 3 n + 1
Adding all the equalities yield:
(n + 1)3 - 13 = 3 (12 + 22 + 32
+ ... +n2) + 3 (1 + 2 + 3 + ... + n) + 1 + 1 + 1 + ... + 1) =
3 Sn2 + 3 Sn + n =
3 Sn2 + 3 n(n + 1)/2 + n
Therefore
3 Sn2 + 3 n(n + 1)/2 + n = (n + 1)3 - 1 =
n3 + 3 n2 + 3 n + 1 - 1 = n3 + 3 n2 + 3 n
3 Sn2 = n3 + 3 n2 + 3 n - 3 n(n + 1)/2 - n =
n3 + 3 n2 + 2 n - (3/2) n2 - (3/2) n =
Then
6Sn2 = 2 n3 + 3 n2 + n =
n(n + 1)(2n + 1)
or
Sn2 = n(n + 1)(2n + 1)/6
| |
n
| | | |
Sn2 | = | Σ | |
i2
| = | n(n + 1)(2n + 1)/6 |
| |
i = 1
| |
|