theorems of analysis  
 
  L'Hospital's rule  
 
  Integration techniques  
 
  Taylor expansions  
 
  Constants  
 
  Units   
 
  home  
 
  ask us  
 


   Calculus III


Contents
















Applications




© The scientific sentence. 2010

SPHERICAL COORDINATES




1. The basic relationships

The folowing figure gives the spherical coordinates of a point P , that is of a vector in space:



We have the following relationships:

r = [x2 + y2 + z2]1/2
tg θ = sin θ/cosθ = (ρ/r)/(z/r) = [x2 + y2]1/2/z
tg φ = y/x

r goes from : 0 to ∞ ( in the space)
θ goes from 0 to π (along the z-axis)
φ goes from 0 to 2π (over the xy-plane)


2. Unit vectors transformatins:


We have the following relationships:

ex = sinθcosφ er + cosθcosφ eθ - sinφ eφ
ey = sinθsinφ er + cosθsinφ eθ + cosφ eφ
ez = cosθ er - sinθ eθ

Writing these relations using a matrix, we obtain

[ex, ey, ez] = M [er, eθ, eφ]

Matrix M =


The transformation is obtained by using the related inverse matrix: :

[er,eθ, eφ] = M-1[ex, ey, ez]

Matrix M-1 =


Therefore:

er = sinθcosφ ex + sinθsinφ ey + cosθ ez
eθ = cosθcosφ ex + cosθsinφ ey - sinθ ez
eφ = - sinφ ex + cosφ ey



3. The components of the gradiant

We will express the components of the gradiant (∂/∂x , ∂/∂y , ∂/∂z) in the cartesian system according to the ones in the spherical system:

x is a function of r, θ and φ
y is a function of r, θ and φ
z is a function of r and θ

Hence:

∂/∂x

∂/∂x = (∂/∂r) ∂r/∂x + (∂/∂θ) ∂θ /∂x + (∂/∂φ) ∂φ/∂x ∂r/∂x = (1/2) (1/r) 2. x = x/r = ρ cos φ/r = sin θ cos φ

• ∂θ /∂x = (1/cos2 θ) ∂θ/∂x = (1/z) (1/2) (1/ρ) 2. x = x /ρz = cos φ /z = cos φ /r cos θ

∂θ/∂x = cos φcosθ/r

• ∂φ/∂x = (1/cos2 φ) ∂φ/∂x = - y/x2 = -sinφ/ρcos2 φ

∂φ/∂x = - sinφ/ρ

Therefore:

∂/∂x = sin θcos φ (∂/∂r) +
cos φcosθ/r (∂/∂θ) - sinφ/ρ (∂/∂φ)


∂/∂y

∂/∂y = (∂/∂r) ∂r/∂y + (∂/∂θ) ∂θ /∂y + (∂/∂φ) ∂φ/∂y

• ∂r/∂y = (1/2) (1/r) 2. y = y/r = ρsin φ/r = sin θsin φ

∂r/∂y = sin θsin φ

• ∂θ /∂y = (1/cos2 θ) ∂θ/∂y = (1/z) (1/2) (1/ρ) 2.y =
y /ρz = sin φ /z = sin φ /r cos θ

∂θ/∂y = sin φcosθ/r

∂φ/∂y = (1/cos2 φ) ∂φ/∂y = 1/x = 1/ρcos φ = 1/r sinθcos φ

∂φ/∂y = cos φ/r sinθ

Therefore:

∂/∂y = sin θsin φ (∂/∂r) +
sin φcosθ/r (∂/∂θ) + cos φ/r sinθ (∂/∂φ)


∂/∂z

∂/∂z = (∂/∂r) ∂r/∂z + (∂/∂θ) ∂θ/∂z

• ∂r/∂z = (1/2) (1/r) 2. z = z/r = cos θ

∂r/∂z = cos θ

• ∂θ/∂z = (1/cos2 θ) = - ρ/z2 = - ρ/r2 cos2θ

∂θ/∂z = - ρ/r2 = - sinθ/r

Therefore:

∂/∂z = cos θ (∂/∂r) - sinθ/r (∂/∂θ)

To recap:

∂/∂x = sin θcos φ (∂/∂r) + cos φcosθ/r (∂/∂θ) - sinφ/ρ (∂/∂φ)

∂/∂y = sin θsin φ (∂/∂r) + sin φcosθ/r (∂/∂θ) + cos φ/r sinθ (∂/∂φ)

∂/∂z = cos θ (∂/∂r) - sinθ/r (∂/∂θ)



4. The Laplacien: Δ

2/∂x2 = (∂/∂x)(∂/∂x) = [sin θcos φ (∂/∂r) + cos φcosθ/r (∂/∂θ) - sinφ/ρ (∂/∂φ)] [sin θcos φ (∂/∂r) + cos φcosθ/r (∂/∂θ) - sinφ/ρ (∂/∂φ)]

= (sin θcos φ)[∂/∂r][sin θcos φ (∂/∂r) + cosφcosθ/r (∂/∂θ) - sinφ/ρ (∂/∂φ)] + (cosφcosθ/r)[∂/∂θ][sin θcos φ (∂/∂r) + cosφcosθ/r (∂/∂θ) - sinφ/ρ (∂/∂φ)] - (sinφ/ρ)[∂/∂φ][sin θcos φ (∂/∂r) + cosφcosθ/r (∂/∂θ) - sinφ/ρ (∂/∂φ)]

= (sin2 θcos2 φ)(∂2/∂r2) - (sin θcos2 φcosθ/r2) (∂/∂θ) + (cos φsinφ/r2) (∂/∂φ) + + (cos2φcos 2θ/r) (∂/∂r) - cos2φsinθcosθ/r2 (∂/∂θ) + cos2φcos2θ/r2 (∂2/∂θ2) + cosφsinφcos2θ/r2sin2θ) ∂/∂φ +(sinθ sin2φ/rsinθ)∂/∂r + (sin2φcosθ/r2sinθ) ∂/∂θ + (sinφcosφ/r2sin2θ)∂/∂φ + (sin2φ/r2sin2θ)∂2/ ∂φ2

2/∂y2 = ∂/∂y(∂/∂y) = [sin θsin φ (∂/∂r) + sin φcosθ/r (∂/∂θ) + cos φ/r sinθ (∂/∂φ)] [sin θsin φ (∂/∂r) + sin φcosθ/r (∂/∂θ) + cos φ/r sinθ (∂/∂φ)]

= (sin2 θcos2 φ)(∂2/∂r2) - (cosθsin2 φsinθ/r2) (∂/∂θ) - (cos φsinφ/r2) (∂/∂φ) + + (sin2φcos 2θ/r) (∂/∂r) - sin2φsinθcosθ/r2 (∂/∂θ) + sin2φcos2θ/r2(∂2/ ∂θ2) - sinφcosφcos2θ/r2sin2θ) ∂/∂φ +(sinθ cos2φ/rsinθ)∂/∂r + (cos2φcosθ/r2sinθ) ∂/∂θ - (sinφcosφ/r2sin2θ)∂/∂φ + (cos2φ/r2sin2θ)∂2/ ∂φ2

2/∂z2 = [∂/∂z][∂/∂z]= [cos θ (∂/∂r) - sinθ/r (∂/∂θ)] [cos θ (∂/∂r) - sinθ/r (∂/∂θ)] = cos2θ∂2/∂r2 + (sinθcosθ/r2)∂/∂θ + (sin2/r)∂/∂r + (sin2/r2) ∂2/∂θ2 + (sinθcosθ/r2)∂/∂θ

Therefore:

Δ = ∂2/∂r2 +(2/r) ∂/∂r + (1/r2)(sinθ/cosθ)∂/∂θ + (1/r2) ∂2/∂θ2 + (1/r2sin2 θ)∂2/∂φ2

Or:

Δ = (1/r2)∂/∂r(r2 ∂/∂r) + (1/r2sinθ)∂/∂θ(sinθ∂/∂θ) + (1/r2sin2θ)∂2/∂φ2)



5. Volume element:

From the following figure:



We obtain: dV = r2drsinθdθdφ



6. The solid angle:

The related solid angle is, by definition, equal to the lateral surface over the square of fthe radius. That is:
dΩ = rdθ rsinθdφ /r2 = sinθdθdφ

dΩ =sinθdθdφ

Ω = ∫dΩ = 2π∫sinθdθ =
2π∫[-cosθ] ( from 0 to π) = 4π


7. The operator DEL

We have: ∇ = ∂/∂x ex + ∂/∂y ey + ∂/∂z ez.
And:

ex = sinθcosφer + cosθcosφeθ - sinφ eφ ey = sinθsinφ er + cosθsinφeθ + cosφeφ ez = cosθer - sinθeθ
And:

∂/∂x = sin θcos φ (∂/∂r) + cos φcosθ/r (∂/∂θ) - sinφ/ρ (∂/∂φ) ∂/∂y = sin θsin φ (∂/∂r) + sin φcosθ/r (∂/∂θ) + cos φ/r sinθ (∂/∂φ) ∂/∂z = cos θ (∂/∂r) - sinθ/r (∂/∂θ)

Therefore:

= sin θ cos φ (∂/∂r) ex + cos φ cos θ /r (∂/∂ θ ) ex - sinφ /ρ (∂/∂φ )ex + sin θ sin φ (∂/∂r) ey + sin φ cos θ /r (∂/∂ θ ) ey + cos φ /r sin θ (∂/∂φ )ey + cos θ (∂/∂r) ez - sin θ /r (∂/∂ θ )ez =

[sin θ cos φ ex + sin θ sin φ ey + cos θ ez ](∂/∂r) + [cos φ cos θ /r ex + sin φ cos θ /r ey - sin θ /r ez](∂/∂ θ ) + [- sinφ /ρ ex + cos φ /r sin θ ey ](∂/∂φ )

= [sin θ cos φ (sin θ cosφ er + cos θ cosφ e θ - sinφ eφ ) + sin θ sinφ (sin θ sinφ er + cos θ sinφ e θ + cosφ eφ ) + cos θ (cos θ er - sin θ e θ ) ](∂/∂r) + [cos φ cos θ /r (sin θ cosφ er + cos θ cosφ e θ - sinφ eφ ) + sin φ cos θ /r (sin θ sinφ er + cos θ sinφ e θ + cosφ eφ ) - sin θ /r (cos θ er - sin θ e θ )](∂/∂ θ ) + [- sinφ /ρ (sin θ cosφ er + cos θ cosφ e θ - sinφ eφ ) + cos φ /r sin θ (sin θ sinφ er + cos θ sinφ e θ + cosφ eφ ) ](∂/∂φ )

= [(sin θ cos φ sin θ cosφ + sin θ sin φ sin θ sinφ + cos θ cos θ )(∂/∂r) + (cos φ cos θ /r sin θ cosφ - sin φ cos θ /r sin θ sinφ + sin θ /r cos θ )(∂/∂ θ ) - sinφ /ρ sin θ cosφ + cos φ /r sin θ sin θ sinφ )(∂/∂φ )]er +[(sin θ cos φ cos θ cosφ + sin θ sin φ cos θ sinφ - cos θ sin θ )(∂/∂r) + (cosφ cos θ /r cos θ cosφ + cos θ sinφ /r cos θ sinφ + sin θ /r sin θ )(∂/∂ θ ) + (- sinφ /ρ cos θ cosφ + cos φ /r sin θ cos θ sinφ )(∂/∂φ )]eθ + [(- cos φ sin θ /r sinφ + cosφ sin θ sin φ )(∂/∂r) + (- sinφ cos φ cos θ /r + cosφ sinφ cos θ /r)(∂/∂ θ ) + (sinφ sinφ /ρ + cosφ cos φ /r sin θ )(∂/∂φ )]eφ

= [(∂/∂r)]er + [(1 /r )(∂/∂ θ )]eθ + [(1/ρ )(∂/∂φ )]eφ

∇ = [(∂/∂r)]er + [(1 /r )(∂/∂ θ )]eθ + [(1/rsinθ )(∂/∂φ )]eφ


8. The divergence in spherical coordinates:

Let: A = (Ar, Aθ, Aφ)

Now we will apply ∂/∂x on Ax , ∂/∂y on Ay and ∂/∂z on Az and sum them:

. A = ∂Ax/∂x + ∂Ay/∂y + ∂Az/∂z

= sin θ cos φ (∂/∂r)[sin θ cosφ Ar + cos θ cosφ A θ - sinφ Aφ ] + cos φ cos θ /r(∂/∂ θ )[sin θ cosφ Ar + cos θ cosφ A θ - sinφ Aφ ] - sinφ /ρ(∂/∂φ )[sin θ cosφ Ar + cos θ cosφ A θ - sinφ Aφ ] + sin θ sin φ (∂/∂r)[sin θ sinφ Ar + cos θ sinφ A θ + cosφ Aφ ] + sin φ cos θ /r (∂/∂ θ )[sin θ sinφ Ar + cos θ sinφ A θ + cosφ Aφ ] + cos φ /r sin θ (∂/∂φ )[sin θ sinφ Ar + cos θ sinφ A θ + cosφ Aφ ] + cos θ (∂/∂r)[cos θ Ar - sin θ A θ ] - sin θ /r (∂/∂ θ )[cos θ Ar - sin θ A θ ]

= [sin2 θ cos2φ + sin2 θ sin2φ + cos2 θ ] (∂Ar/∂r) + [cos2φ cos2 θ /r + sin2φ /ρ + sin2φ cos2 θ /r + sin θ cos2φ /ρ + sin2 θ /r] Ar + [- cos2φ cos θ sinθ/r + cos θ sin2φ /ρ - sin2φcos θ sin θ /r + cos θ cos2φ /ρ + cos θ sin θ /r]A θ + cos2φ cos2 θ /r + sin2φ cos2 θ /r + sin2 θ /r]∂A θ /∂θ + [sinφ cosφ /ρ - cosφ sinφ /ρ ]Aφ + [sin2φ /ρ + cos2φ /ρ]∂Aφ /∂φ

= (2/r) Ar + ∂Ar/∂r + cosφ /ρ A θ + (1/r)∂A θ /∂θ + (1/ρ)∂Aφ /∂φ

= (1/r2) ∂[r2Ar]/∂r + (1/r sinθ)&part[sinθAθ]/∂θ + 1/r sinθ)∂[Aφ]/∂φ

. A = (1/r2) ∂[r2Ar]/∂r + (1/r sinθ)∂[sinθAθ]/∂θ +
1/r sinθ)∂[Aφ]/∂φ



9. The curl of a vector in spherical coordinates:

Let A = (Ar, Aθ, Aφ)

We can calculate Curl A this way:

Curl (A) = x A = ex ey ez ∂/∂x ∂/∂y ∂/∂z Ax Ay Az

= (∂[Az]/∂y - ∂[Ay]/∂z)ex + ∂[Ax]/∂z - ∂[Az]/∂x) ey + ∂[Ay]/∂x - ∂[Ax]/∂y) ez And write all the related expressions. But its too long.

We will, instead use the DEL operator, which is:

= [(∂/∂r)]er + [(1 /r )(∂/∂ θ )]e θ + [(1/rsin θ )(∂/∂φ )]eφ

er = sin θ cosφ ex + sin θ sinφ ey + cos θ ez
eθ = cos θ cosφ ex + cos θ sinφ ey - sin θ ez
eφ = - sinφ ex + cosφ ey


We will use:

∂er/∂r = 0 ∂er/∂ θ = e θ ∂er/∂φ = sin θ eφ
∂e θ /∂r = 0 ∂e θ /∂ θ = - er ∂e θ ∂φ = cos θ eφ
∂eφ /∂r = 0 ∂eφ /∂ θ = 0 ∂eφ /∂φ = - (sin θ er + cos θ e θ )
er x er = 0 e θ x e θ = 0 eφ x eφ = 0
er x e θ = eφ eφ x er = e θ e θ x eφ = er


Then:

Curl A = x A = [(∂/∂r) er + (1 /r )(∂/∂ θ ) e θ + (1/rsin θ )(∂/∂φ )eφ ] x [ Ar er + A θ e θ + Aφ eφ ] = [(∂/∂r) er + (1 /r )(∂/∂ θ ) e θ + (1/rsin θ )(∂/∂φ )eφ ] x [ Ar er + A θ e θ + Aφ eφ ]

= er x [(∂/∂r) Ar er + (∂/∂r) A θ e θ + (∂/∂r) Aφ eφ ] + (e θ /r) x [(∂/∂ θ )Ar er + (∂/∂ θ )A θ e θ + (∂/∂ θ )Aφ eφ ] + (1/rsin θ ) eφ x [(∂/∂φ )Ar er + (∂/∂φ )A θ e θ + (∂/∂φ )Aφ eφ ]

= (∂Ar /∂r) er x er + (∂A θ /∂r) er x e θ + (∂Aφ /∂r) er x eφ + Ar er x(∂er/∂r) + A θ er x(∂e θ /∂r) + Aφ er x(∂eφ /∂r) + (∂Ar/∂ θ )(e θ /r) x er + (∂A θ /∂ θ )(e θ /r) x e θ + (∂Aφ /∂ θ )(e θ /r) x eφ + Ar(e θ /r) x (∂er /∂ θ ) + A θ (e θ /r) x (∂e θ /∂ θ ) + Aφ (e θ /r) x (∂eφ /∂ θ ) + (1/rsin θ )(∂Ar/∂φ ) eφ x er + (1/rsin θ )(∂A θ /∂φ ) eφ x e θ + (1/rsin θ ) (∂Aφ /∂φ ) eφ x eφ Ar(1/rsin θ ) eφ x [(∂er/∂φ ) + A θ (1/rsin θ ) eφ x (∂e θ /∂φ ) + Aφ (1/rsin θ ) eφ x (∂eφ /∂φ )

= 0 + (∂A θ /∂r)eφ - (∂Aφ /∂r)e θ + 0 + 0 + 0 + - (∂Ar/∂ θ )(eφ /r) + 0 + (∂Aφ /∂ θ )(er /r)+ 0 + (1/r)A θ eφ + 0 + (1/rsin θ )(∂Ar/∂φ ) e θ - (1/rsin θ )(∂A θ /∂φ ) er + 0 0 + 0 - Aφ (1/rsin θ ) (sin θ e θ - cos θ er) ]

= (1/r)(∂Aφ /∂ θ ) er - (1/rsin θ )(∂A θ /∂φ ) er + Aφ ( cos θ /rsin θ ) er + (1/rsin θ )(∂Ar/∂φ ) e θ - Aφ (sin θ /rsin θ ) e θ - (∂Aφ /∂r)e θ + (1/r)A θ eφ + (∂A θ /∂r)eφ - (1/r)(∂Ar/∂ θ ) eφ


A = (Ar, A θ , Aφ )

x A = [(1/r)(∂Aφ /∂ θ ) - (1/rsin θ )(∂A θ /∂φ ) + Aφ (cos θ /rsin θ )] er + [ (1/rsin θ )(∂Ar/∂φ ) - (1/r)Aφ - (∂Aφ /∂r)] e θ + [(1/r) A θ + (∂A θ /∂r) - (1/r)(∂Ar/∂ θ )]eφ

Or:

x A = (1/rsin θ )[(∂(sin θ Aφ )/∂ θ ) - (∂A θ /∂φ )] er + (1/rsin θ )[(∂Ar/∂φ ) - sin θ (∂(r Aφ )/∂r)] e θ + (1/r)[∂(r A θ )/∂r - ∂Ar/∂ θ ]eφ






  


chimie labs
|
Physics and Measurements
|
Probability & Statistics
|
Combinatorics - Probability
|
Chimie
|
Optics
|
contact
|


© Scientificsentence 2010. All rights reserved.