theorems of analysis  
 
  L'Hospital's rule  
 
  Integration techniques  
 
  Taylor expansions  
 
  Constants  
 
  Units   
 
  home  
 
  ask us  
 


   Calculus III


Contents
















Applications




© The scientific sentence. 2010

Calculus III:

Surface area
Surface area element





We are going to determine between dS and dA. Ds is rhe surface element , and dA is the surface area element.



1. Surface area element




The vector position points on the surface S.

= x + y + z

Its derivative is:

= dx + dy + dz

z = f(x,y) → dz = (∂f/∂x)dx + (∂f/∂y))dy

= + .

= (y = const) = dx + dz =
dx + ((∂f/∂x)dx + (∂f/∂y)dy ) =
dx ( + (∂f/∂x))

Similarly, in the y direction, dx = 0, which leads to:

= dy ( + (∂f/∂y))

Now, let's evaluate dS:

dS = | x | =
dx 0 dx fx
0 dy dy fy

= - dx dy (∂f/∂x) - dx dy (∂f/∂y) + dx dy

Taking its magnitude:

dS = | x | =
= |- dx dy (∂f/∂x) - dx dy (∂f/∂y) + dx dy | =
√{[dx dy (∂f/∂x)]2 + [dx dy (∂f/∂y)]2 + [dx dy]2} =
dx dy √[(∂f/∂x)2 + (∂f/∂y)2 + 1] =

dS = √[(∂f/∂x)2 + (∂f/∂y)2 + 1] dx dy =
dS = √(fx2 + fy2 + 1) dx dy

dS = √(fx2 + fy2 + 1) dx dy



2. Surface area element formula


To integrate a function f(x,y) over a surface S, we project the surface S on the xy-plane to get the corresponding region D, of area element dA = dx dy, where to integrate this function.

∫∫S f(x,y) dS = ∫∫D f(x,y) √(fx2 + fy2 + 1) dA.

dS changes according to the formula:









  


chimie labs
|
Physics and Measurements
|
Probability & Statistics
|
Combinatorics - Probability
|
Chimie
|
Optics
|
contact
|


© Scientificsentence 2010. All rights reserved.