theorems of analysis  
 
  L'Hospital's rule  
 
  Integration techniques  
 
  Taylor expansions  
 
  Constants  
 
  Units   
 
  home  
 
  ask us  
 


   Calculus III


Contents
















Applications




© The scientific sentence. 2010

Calculus III:

Surfaces integrals





1. Definitions and method


In three-dimetional space, we integreted, functions of two variables or three variables, over a region D. D could be rectangular or any region, but a plane region.

Now, in three-dementional space, we are now going to integrate functions of three variables x, y, z, over some surface S .

The method is to link one of the three coordinates x, or, y , or as a function the two others. That is x = g(y,z), y = g(x,z), or z = g(x, z). Doing this leads to an integral over D, that over a plane region D.




The region S lies above some region D that lies in the xy-plane.

The region D coud be rectangular, or any region. It could be in front of the xy-plane, or the yz-plane or the xz-plane.

Let’s consider the surface integral in which the surface S is given by z = f(x, y) . In this case the surface integral is:



Note that the integral on the left is a surface integral with the differential dS. The integral on the right is a double integral with the differential dA.

With the parametric surfaces notation:

(u,v) = x(u,v) + y(u,v) + z(u,v) ,

we use the following formula:



D is the set of the parameters u and v.



Example 1

Evaluate ∫∫S xy dS, where S is the portion of the plane x + y + z = 2 that lies in the 1st octant and is in front of the yz-plane.



The equation of the surface in the form x = g(y,z) is:

x = g(y, z) = 2 - y - z

The integrand f(x,y,z) becomes: f(2 - y - z, y,z). So the region D is the triangle of vertices (2,0), (0,0), and (0,2)

In the yz-plane, x = 0 z = 2 - y

The ranges for y and z are:

0 ≤ y ≤ 2           0 ≤ z ≤ 2 - y

√ [(∂g/∂y)2 + (∂g/∂z)2 + 1] = = √ [(- 1)2 + (- 1)2 + 1] = √3

Therefore

∫∫S xy dS = ∫∫D (2 - y - z)y √3 dA =
∫∫D (2y - y2 - zy) √3 dy dz =
√3 ∫02 ∫02-y (2y - y2 - zy) dz dy =
√3 ∫02 (2y - y2)(2 - y) - y(2 - y)2/2) dy
= (y2 - (2/3)y3 + (1/8(y4)|02 = 2√/3.

∫∫S xy dS = 2√/3



Example 2

Evaluate ∫∫S x + y dS, where the surface S is the cylinder x2 + y2 = 4 cut by a plane z = 3 - y.



We have:

∫∫S x + y dS = ∫∫S1 x + y dS + ∫∫S2 x + y dS + ∫∫S3 x + y dS

1. ∫∫S1 x + y dS

Parameterization of the cylinder:

• (z, φ) = 2 cos φ + 2 sin φ + z

• = ∂/∂z = 〈 0 , 0, 1 〉

• = ∂/∂φ = 〈 - 2 sin φ , 2 cos φ, 0 〉

x =
0 0 1
- 2 sin φ 2 cos φ 0


= √4 = 2.

• 0 ≤ θ ≤ 2π and 0 ≤ z ≤ 3 - y = 3 - 2 sin θ

Therefore

∫∫S1 x + y dS = ∫∫D (2 cos θ + 2 sin θ) (2) dA =
4 ∫02π ∫03-2sin θ (cos θ + sin θ) dz dθ =
4 ∫02π (cos θ + sin θ)(3 - 2 sin θ) dθ =
4 (3 sin θ + cos (2θ) - 3 cos θ - θ +(1/2) sin (2))|02π =
4 (- 2π) = - 8 π

∫∫S1 x + y dS = - 8 π

2. ∫∫S2 x + y dS

z = g(x, y) = 3 - y

√[(∂g/∂)2 + (∂g/∂)2 + 1] = √[(0)2 + (- 1)2 + 1] = √2

∫∫S2 x + y dS = ∫02π ∫02 ( r cos θ + r sin θ) (√2) r dr dθ =
(√2) ∫02π ∫02 r2 dr (cos θ + sin θ ) dθ =
(√2) ∫02π (8/3) (cos θ + sin θ) dθ =
(8/3) (√2) (sin θ - cos θ) |02π = 0

∫∫S2 x + y dS = 0

3. ∫∫S3 x + y dS

z = g(x, y) = 0

√[(∂g/∂)2 + (∂g/∂)2 + 1] = √[(0)2 + (0)2 + 1] = √1 = 1.

∫∫S2 x + y dS = ∫02π ∫02 ( r cos θ + r sin θ) r dr dθ =
∫02π ∫02 r2 dr (cos θ + sin θ) dθ =
(8/3) ∫02π (cos θ + sin θ) dθ =

(8/3) ∫02π (sin θ - cos θ) = 0

∫∫S3 x + y dS = 0

Therefore

∫∫S x + y dS = 0 - 8 π + 0 = - 8 π

∫∫S (x + y) dS = - 8 π






  


chimie labs
|
Physics and Measurements
|
Probability & Statistics
|
Combinatorics - Probability
|
Chimie
|
Optics
|
contact
|


© Scientificsentence 2010. All rights reserved.