theorems of analysis  
 
  L'Hospital's rule  
 
  Integration techniques  
 
  Taylor expansions  
 
  Constants  
 
  Units   
 
  home  
 
  ask us  
 


   Calculus III


Contents
















Applications




© The scientific sentence. 2010

Calculus III:

Vector operators
Hat operator
Part operator ∂
Del operator: Gradient and divergence
Curl Operator
Laplace Operator





1. Hat operator



The Hat operator transforms a vector into its unit vetor :

= /||||

The unit vector has a magnitude of 1.

We have || || = 1.



2. Operator part: ∂


The vector partial: ∂ is defined as follows:

∂ = 〈 ∂/∂x, ∂/∂y, ∂/∂z 〉 = 〈 ∂x, ∂y, ∂z


3. Del operator


By definition, It is written as:

∇ = 〈 ∂/∂x, ∂/∂y, ∂/∂z 〉 = ∂/∂xi

It acts on a scalar to give a vector. This is the gradient of the scalar.

It acts on a vector to give a scalar. This is the divergence of the scalar.


The Gradient:

∇ (scalar) = Vector

∇ φ = 〈 ∂φ/∂x, ∂φ/∂y,∂φ/∂z 〉

The result is a vector.


The Divergence:

∇ . (Vector) = Scalar ( dot product)

∇ . 〈 X, Y, Z 〉 = 〈 ∂/∂x, ∂/∂y, ∂/∂z〉 . 〈 X, Y, Z 〉 =
∂X/∂x + ∂Y/∂y + ∂Z/∂z

∇ . 〈X, Y, Z 〉 = ∂X/∂x + ∂Y/∂y + ∂Z/∂z

The result is a scalar.



4. Curl operator


∇ x (Vector) = Vector (cross product)

∇ x 〈 X, Y, Z 〉 = 〈 ∂/∂x, ∂/∂y, ∂/∂z 〉 x 〈 X, Y, Z 〉 =
〈 ∂Z/∂y - ∂Y/∂z , ∂ X/∂z - ∂Z/∂x , ∂Y/∂x - ∂v/∂y 〉

∇ x ( X, Y, Z) =
〈 ∂Z/∂y - ∂Y/∂z , ∂X/∂z - ∂Z/∂x , ∂Y/∂x - ∂X/∂y 〉



5. Laplacien operator


Δ ( Scalar) = Scalar

Δ = ∇2 = ∇ . ∇ =
〈 ∂2/∂x2, ∂2/∂y2, ∂2/∂z2〉 =
∇ . ∇ ( Scalar) = ∇ . Gradient = Divergence (Gradient)

Δ φ = ∂2φ/∂x2 + ∂2φ/∂y2 + ∂2φ/∂z2






  


chimie labs
|
Physics and Measurements
|
Probability & Statistics
|
Combinatorics - Probability
|
Chimie
|
Optics
|
contact
|


© Scientificsentence 2010. All rights reserved.