theorems of analysis  
 
  L'Hospital's rule  
 
  Integration techniques  
 
  Taylor expansions  
 
  Constants  
 
  Units   
 
  home  
 
  ask us  
 


   Complex integration


Contents





© The scientific sentence. 2010

Complex integration :
Residue theorem





1. Residue theorem : One pole zo


• f(z) has a pole of order m at z = zo. The Laurent expansion of f around zo starts from j = - m, so that a- m ≠ 0. That is
\[ \large\bf\color{brown}{ \textit f(\textit z) = \sum_{j = - m}^\infty \textit a_j(\textit z - \textit z_o)^j } = \\ \] \[ \bf\color{indigo}{ \frac{a_{- m}}{(\textit z - \textit z_o)^m} + ... + a_0 + a_1(\textit z - \textit z_o) + a_2(\textit z - \textit z_o)^2 + ... \\ with \; a_{- m} \ne 0 } \]

We want to ingegrate f(z) over a countour C. The circle C is centered at te point zo. Γ is the interior circle of radius r and centered also on zo.
\[ \bf\color{brown}{ \oint_C f(z) dz = \oint_{\Gamma} f(z) dz \\ Set z = zo + r exp{i\theta} \Rightarrow dz = i r exp {i\theta d\theta} \\ \oint_C f(z) dz = \oint_C \sum_{j = - m}^\infty \textit a_j(\textit z - \textit z_o)^j dz = \\ \sum_{j = - m}^\infty \textit a_j \int_{0}^{2\pi} (r exp{i\theta})^j i r exp {i\theta} d\theta = \\ \sum_{j = - m}^\infty \textit a_j \int_{0}^{2\pi} i r^{j+1} exp{i (j + 1)\theta} d\theta } \]

\[ \bf\color{black}{ \text {For j} \neq - 1, \int_{0}^{2\pi} i r^{j+1} exp {i (j + 1)\theta} d\theta = \\ \frac {exp{i (j + 1)\theta}}{i(j + 1)} |_0^{2\pi} = 0 } \] \[\large\bf\color{red}{ j \neq - 1 \Rightarrow \oint_C f(z) dz = 0 } \]

\[ \bf\color{black}{ \text {For j = - 1,} \int_{0}^{2\pi} i r^{j+1} exp{i (j + 1)\theta} d\theta = \\ \int_{0}^{2\pi} i d\theta = 2\pi i } \] \[\large\bf\color{red}{ j = - 1 \Rightarrow \oint_C f(z) dz = 2\pi i a_{-1} } \]

Therefore

\[\Large\bf\color{teal}{ \oint_C \textit f(\textit z) \textit d\textit z = 2\pi \textit i \textit a_{-1} } \]



2. Residue theorem


f(z) is continuous within and on a closed contour C; and analytic, except for a finite number of poles within C. The residue theorem or the Cauchy Integral Formula reads:
\[\Large\bf\color{brown}{ \oint_C \textit f(\textit z) \textit d\textit z = 2\pi \textit i \sum_j \textit R_j } \] \[ \bf\color{indigo}{ \sum_j R_j \; \text { is the sum of the residues of } \\ \text {the function f(z) at its poles within C.} } \]






  


chimie labs
|
Physics and Measurements
|
Probability & Statistics
|
Combinatorics - Probability
|
Chimie
|
Optics
|
contact
|


© Scientificsentence 2010. All rights reserved.