General Relativity
© The scientific sentence. 2010
|
Relativity: Christoffel symbols
1. Gradient operator
The gradient of a scalar φ is defined as vector:
∇ φ = (∂φ/∂x, ∂φ/∂y, ∂φ/∂z)
or:
∇ φ = (∂φ/∂x1, ∂φ/∂x2, ∂φ/∂x3)
or more generally:
∇ φ = ∂φ/∂xi
In the contravariant basis vector gi, it has the following expression:
∇ φ = ∂φ/∂xi gi
Using the definition of the del operator =
∇ = gi ∂/∂xi
, we can write :
∇ φ = del (φ)
∂φ/∂xi is the ith covariant component
of the gradient vector.
2. Divergence operator for a vector field
A vector field is the vector with components in the
basis vector gi or gi which vary
with position.
The divergence of a normal vector A = (A1, A2, A3) is
∇ A = d A1/dx1 + d A2/dx2 + d A3/dx3
Let's consider the vector V in the covariant basis vector gi, the
V = Vi gi,
The divergence of the vector field V
is :
∇i V = gi ∂/∂xi (Vj gj)
The derivative operates both on the vector components Vj
and the basis vectors gj
.
We have then:
∇i V = gi . [(∂Vj /∂xi) gj
+ Vj (∂gj/∂xi)]
The term ∂gj/∂xi is a vector of
components Γjik written in the
basis vectors covariants gk as:
∂gj/∂xi = Γkji gk
The coefficients Γk ji are called Christoffel symbols.
Christoffel symbols: Γkij :
∂gi/∂xj = Γkij gk
The form Γkij of the Christoffel symbols
are called of the second kind.
∇iV is called the covariant derivative of
the vector field V.
We can express the covariant derivative of V in
terms of Chrisytoffel symbols as:
∇i V = gi . [(∂Vj /∂xi) gj
+ Vj Γkji gk]
= gi . [(∂Vk /∂xi) gk
+ Vj Γkji gk]
= gi . [(∂Vk /∂xi)
+ Vj Γkji] gk
∇i V = gi . [(∂Vk /∂xi)
+ Vj Γkji] gk
∇i V = gi . [(∂Vk/∂xi)
+ Vj Γkji] gk
Setting
∂ /∂xi = ∂xi,
we
can write:
∇i = gi [∂xi
+ Γkji]gk =
[∂xi
+ Γkji] δik
=
∂xi
+ Γiji = ∂xi
+ Γj
∇i = ∂xi
+ Γj
For short:
∇μ = ∂xμ
+ Γμ
∇μ = ∂xμ
+ Γμ
3. Christoffel symbols of first kind
Dot multiplying the above equation by gl, we obtain:
∂gi/∂xj gl
= Γkij(gk gl) =
Γkijk gkl =
Γkij δglk =
Γlij
Γlij = ∂gi/∂xj gl
Γlij = gl ∂gi/∂xj
(3.1)
In terms of derivatives of the position vector r:
gi = ∂r/∂xi .
The Christoffel symbol; becomes:
Γlij = gl ∂2r
∂xi∂xj
That shows the symmetry with respect to the two indexes i an j:
Γlij = Γlji
Γlij = Γlji
Using the metric gij to lower an index, we
can write:
gkl Γlij = Γkij
Γkij = gkl Γlij
(3.2)
The term Γkij is called the Christoffel symbol of first kind
. We have the same symmetry for this kind:
Γkij = Γjik
Γkij = Γjik
4. Christoffel symbols in terms of the metric gμν
Using the expression (3) and (4):
Γlij = gl ∂gi/∂xj
gkl Γlij = Γkij
we obtain:
Γkij = gkl gl . ∂gi/∂xj
=
gk . ∂gi/∂xj
Γkij = gk . ∂gi/∂xj
(4.1)
The spatial derivative of the metric gij is:
d(gij)/∂xk = d(gi. gj)/∂xk
gi . d(gj)/∂xk +
gj . d(gi)/∂xk
In terms of the Christoffel symbols:
d(gij)/∂xk = Γijk + Γjik
(4.2)
similarly
d(gik)/∂xj = Γikj + Γkij
(4.3)
and
d(gjk)/∂xi = Γjki + Γkji
(4.4)
Adding (4.4) to (4.3) gives:
d(gik)/∂xj + d(gjk)/∂xi
= Γikj + Γkij + Γjki + Γkji
Sutracting (4.2) gives:
d(gik)/∂xj + d(gjk)/∂xi - d(gij)/∂xk
= Γikj + Γkij + Γjki + Γkji
- Γijk - Γjik
d(gik)/∂xj + d(gjk)/∂xi - d(gij)/∂xk
= Γkij + Γkji
Since, we have by symmetry:
Γikj - Γijk = 0
Γjki - Γjik = 0
Γkij + Γkji = 2 Γkij
We obtain:
2 Γkij = d(gik)/∂xj + d(gjk)/∂xi - d(gij)/∂xk
That is:
Γkij =
(1/2)[dgik/∂xj + dgjk/∂xi - dgij/∂xk]
(4.5)
We have
gkl Γkij = Γlij
or
Γkij = glk Γlij
= gkl Γlij
Therefore:
Γkij = gkl
(1/2)[dgil/∂xj + dgjl/∂xi - dgij/∂xl]
Γkij = gkl
(1/2)[dgil/∂xj + dgjl/∂xi - dgij/∂xl]
Γkij = (1/2) gkl
[dgil/∂xj + dgjl/∂xi - dgij/∂xl]
|
|