Euler-Lagrange equation  
 
  christoffel-schwarzschild  
 
  ricci-schwarzschild  
 
  Constants  
 
  Units   
 
  home  
 
  ask us  
 

 

      General Relativity



© The scientific sentence. 2010

Relativity: Uniformly accelerated observers




1. Velocities in the two inertial frames

The Lorentz transformation of the space-time coordinates of a moving particle between an inertial frame "S" and an another inertial frame "S'" is:

t' = γ(t - vx/c2)
x' = γ (x - vt)
y' = y
z' = z


Where v is the velocity of the inertial frame S' with respect to the inertial frame S, and γ = [1 - v2/c2]c-1/2.

If the particle doesn't move in S', then x' = 0 and x = vt. Therfore t' = γ t(1 - v2/c2) = t/γ or t = γ t' and the time dilates in the inertial frame S.

The velocity of the particle is u' in S', and u in S. Therfeore:

u'x = dx'/dt' = (dx - vdt)/(dt - vdx/c2) = (ux - v)/(1 - vux/c2)
u'y = dy'/dt' = dy/γ(dt - vdx/c2) = uy/γ(1 - vux/c2)
u'z = dz'/dt' = dz/γ(dt - vdx/c2) = (uz - v)/γ(1 - vux/c2)

u'x = (ux - v)/(1 - vux/c2)

u'y = (1/γ) uy/(1 - vux/c2)

u'z = (1/γ) uz/(1 - vux/c2)



2. Accelerations in the two inertial frames

The acceleration of the particle is a' in S', and a in S. Therfeore:

a'x = du'x/dt' = d[(ux - v)/(1 - vux/c2)]/ [γ(dt - vdx/c2)]

We have:
d[(ux - v)/(1 - vux/c2)] =
{dux(1 - vux/c2) - (ux - v) d((1 - vux/c2))}/(1 - vux/c2)2 =
{dux - (vux/c2)dux + ux (vdux/c2) - v2(dux/c2)}/(1 - vux/c2)2 =
{dux - dux(v2/c2)}/(1 - vux/c2)2 = dux{ 1 - (v2/c2)}/(1 - vux/c2)2 =
(1/γ2) dux/(1 - vux/c2)2

Therefore

a'x = (1/γ2) dux/(1 - vux/c2)2/ [γ(dt - vdx/c2)] =
(1/γ3) dux/(1 - vux/c2)2(dt - vdx/c2)

With the x-component of the velocity of the particle ax = dux/dt, we get:

a'x = (1/γ3) ax/(1 - vux/c2)/ [(1 - vux/c2)2 =
(1/γ3) ax/(1 - vux/c2)3

a'x = (1/γ3) ax/(1 - vux/c2)3

a'y = du'y/dt' = d[uy/γ(1 - vux/c2)]/ [γ(dt - vdx/c2)] =
(1/γ2) d[uy/(1 - vux/c2)]/ (dt - vdx/c2) =
(1/γ2) {duy(1 - vux/c2) - uy d((1 - vux/c2))}/(1 - vux/c2)2(dt - vdx/c2) =
(1/γ2) {duy - (vux/c2) duy + uy(vdux/c2) }/(1 - vux/c2)2(dt - vdx/c2) =
(1/γ2) {duy[1 - (vux/c2)] + uy(vdux/c2) }/(1 - vux/c2)2(dt - vdx/c2)

With the y-component of the velocity of the particle ay = duy/dt

a'y = (1/γ2) {ay[1 - (vux/c2)] + uy(vax/c2) }/(1 - vux/c3)2

a'y = (1/γ2) {ay[1 - (vux/c2)] +
uy(vax/c2) }/(1 - vux/c2)3




Similarly

a'z = (1/γ2) {az[1 - (vux/c2)] +
uz(vax/c2) }/(1 - vux/c2)3




3. Uniformly accelerated motion
acceleration transformation

For a particle with constant acceleration a'x fixed in the inertial frame S' (instantaneous rest frame for the particle), we have
ux = v.

Hence

For the velocities:
u'x = 0
u'y = (1/γ) uy/(1 - v2/c2) = γuy
u'z = γuz

u'x = 0    u'y = γuy   u'z = γuz

And for the accelerations:

a'x = (1/γ3) ax/(1 - v2/c2)3 = γ3 ax

a'y = (1/γ2) {ay[1 - (v2/c2)] + uy(v ax/c2) }/(1 - v2/c2)3
= γ4 {(ay2) + uy(v/c2)ax}

a'z = γ4{(az2) + uz(v/c2)ax}

a'x = γ3 ax
a'y = γ4[(ay2) + uy(v/c2)ax]
a'z = γ4[(az2) + uz(v/c2)ax]



4. Velocity of a uniformly accelerated particle

Now let's consider

a'x = γ3 ax


Remark first that

d(γ v)/dt = γ dv/dt + v dγ/dt

We have
dv/dt = ax, and
dγ/dt = d(1 - v2/c2)-1/2/dt =
-(1/2)(1 - v2/c2)-3/2 (-2vdv/dt)(1/c2) =
(1 - v2/c2)-3/2 (v ax)(1/c2) =
γ3 (v ax)(1/c2)

Then

d(γ v)/dt = γax + γ3 ax(v/c)2 =
= γax[1 + γ2(v/c)2] =
γ3 ax[1 - (v/c)2 + (v/c)2] =
= γ3 ax

d(γ v)/dt = γ3 ax = a'x

Integrating with respect t gives:
γ v = a'x t + constant

Assuming v = 0 at t= 0 leads to constant = 0. Therefore

γ v = a'x t
or
v(1 - v2/c2)-1/2 = a'x t

Squaring gives:
v2(1 - v2/c2) -1 = a'2x t2
or
v2 = a'2x t2 (1 - v2/c2)

v2[1 + a'2x t2/c2 ] = a'2x t2

Therefore

v = a'x t/[1 + a'2x t2/c2]1/2

v = dx/dt = a'x t/[1 + (a'x t/c)2]1/2



4. Position of a uniformly accelerated particle

Integrating of the above equation gives:

x = ∫ dt a'x t/[1 + (a'x t/c)2]1/2 =
a'x ∫ dt t/[1 + (a'x t/c)2]1/2 =
With
1 + (a'x t/c)2 = w
dw = 2 (a'x/c)2 t dt
so

x = [a'x/2(a'x/c)2] ∫ dw w- 1/2 =
[a'x/2(a'x/c)2] 2 w1/2 =
(c2/a'x) [1 + (a'x t/c)2]1/2

x = (c2/a'x) [1 + (a'x t/c)2]1/2

That leads to:

x2 = (c2/a'x)2 [1 + (a'x t/c)2]
= (c2/a'x)2 + [(a'x t/c)2](c2/a'x)2 =
(c4/a'x2) + t2 c2

or

x2 - c2t2 = c4/a'x2

x2 - c2t2 = c4/a'x2

This equation represents the hyperbolic path of the uniformly moving particle (or moving observer) in a Minkowski space-time coordinate system of the stationary frame S.






  


chimie labs
|
Physics and Measurements
|
Probability & Statistics
|
Combinatorics - Probability
|
Chimie
|
Optics
|
contact
|


© Scientificsentence 2010. All rights reserved.