Euler-Lagrange equation  
 
  christoffel-schwarzschild  
 
  ricci-schwarzschild  
 
  Constants  
 
  Units   
 
  home  
 
  ask us  
 

 

      General Relativity



© The scientific sentence. 2010

Relativity: Christoffel symbols



1. Gradient operator

The gradient of a scalar φ is defined as vector:
∇ φ = (∂φ/∂x, ∂φ/∂y, ∂φ/∂z)
or:
∇ φ = (∂φ/∂x1, ∂φ/∂x2, ∂φ/∂x3)

or more generally:
∇ φ = ∂φ/∂xi
In the contravariant basis vector gi, it has the following expression:
∇ φ = ∂φ/∂xi gi

Using the definition of the del operator =
∇ = gi ∂/∂xi , we can write : ∇ φ = del (φ)

∂φ/∂xi is the ith covariant component of the gradient vector.


2. Divergence operator for a vector field

A vector field is the vector with components in the basis vector gi or gi which vary with position.

The divergence of a normal vector A = (A1, A2, A3) is
∇ A = d A1/dx1 + d A2/dx2 + d A3/dx3

Let's consider the vector V in the covariant basis vector gi, the
V = Vi gi,
The divergence of the vector field V is :
i V = gi ∂/∂xi (Vj gj)

The derivative operates both on the vector components Vj and the basis vectors gj .

We have then:
i V = gi . [(∂Vj /∂xi) gj + Vj (∂gj/∂xi)]

The term ∂gj/∂xi is a vector of components Γjik written in the basis vectors covariants gk as:

∂gj/∂xi = Γkji gk

The coefficients Γk ji are called Christoffel symbols.

Christoffel symbols: Γkij :
∂gi/∂xj = Γkij gk

The form Γkij of the Christoffel symbols are called of the second kind.

iV is called the covariant derivative of the vector field V.

We can express the covariant derivative of V in terms of Chrisytoffel symbols as:

i V = gi . [(∂Vj /∂xi) gj + Vj Γkji gk]
= gi . [(∂Vk /∂xi) gk + Vj Γkji gk]
= gi . [(∂Vk /∂xi) + Vj Γkji] gk

i V = gi . [(∂Vk /∂xi) + Vj Γkji] gk

i V = gi . [(∂Vk/∂xi) + Vj Γkji] gk

Setting
∂ /∂xi = ∂xi,
we can write:
i = gi [∂xi + Γkji]gk =
[∂xi + Γkji] δik = ∂xi + Γiji = ∂xi + Γj
i = ∂xi + Γj

For short:μ = ∂xμ + Γμ
μ = ∂xμ + Γμ



3. Christoffel symbols of first kind

Dot multiplying the above equation by gl, we obtain:
∂gi/∂xj gl = Γkij(gk gl) =
Γkijk gkl = Γkij δglk = Γlij

Γlij = ∂gi/∂xj gl

Γlij = gl ∂gi/∂xj    (3.1)

In terms of derivatives of the position vector r:
gi = ∂r/∂xi .

The Christoffel symbol; becomes:
Γlij = gl2r ∂xi∂xj

That shows the symmetry with respect to the two indexes i an j:
Γlij = Γlji

Γlij = Γlji

Using the metric gij to lower an index, we can write:
gkl Γlij = Γkij

Γkij = gkl Γlij    (3.2)

The term Γkij is called the Christoffel symbol of first kind . We have the same symmetry for this kind:

Γkij = Γjik

Γkij = Γjik



4. Christoffel symbols in terms of the metric gμν

Using the expression (3) and (4):

Γlij = gl ∂gi/∂xj
gkl Γlij = Γkij

we obtain:
Γkij = gkl gl . ∂gi/∂xj = gk . ∂gi/∂xj

Γkij = gk . ∂gi/∂xj    (4.1)

The spatial derivative of the metric gij is:

d(gij)/∂xk = d(gi. gj)/∂xk
gi . d(gj)/∂xk + gj . d(gi)/∂xk

In terms of the Christoffel symbols:
d(gij)/∂xk = Γijk + Γjik    (4.2)
similarly
d(gik)/∂xj = Γikj + Γkij    (4.3)
and
d(gjk)/∂xi = Γjki + Γkji    (4.4)


Adding (4.4) to (4.3) gives:
d(gik)/∂xj + d(gjk)/∂xi = Γikj + Γkij + Γjki + Γkji

Sutracting (4.2) gives:
d(gik)/∂xj + d(gjk)/∂xi - d(gij)/∂xk = Γikj + Γkij + Γjki + Γkji - Γijk - Γjik

d(gik)/∂xj + d(gjk)/∂xi - d(gij)/∂xk = Γkij + Γkji

Since, we have by symmetry:
Γikj - Γijk = 0
Γjki - Γjik = 0
Γkij + Γkji = 2 Γkij

We obtain:

2 Γkij = d(gik)/∂xj + d(gjk)/∂xi - d(gij)/∂xk

That is:

Γkij = (1/2)[dgik/∂xj + dgjk/∂xi - dgij/∂xk]    (4.5)

We have
gkl Γkij = Γlij
or
Γkij = glk Γlij = gkl Γlij

Therefore:
Γkij = gkl (1/2)[dgil/∂xj + dgjl/∂xi - dgij/∂xl]
Γkij = gkl (1/2)[dgil/∂xj + dgjl/∂xi - dgij/∂xl]



Γkij = (1/2) gkl [dgil/∂xj + dgjl/∂xi - dgij/∂xl]








  


chimie labs
|
Physics and Measurements
|
Probability & Statistics
|
Combinatorics - Probability
|
Chimie
|
Optics
|
contact
|


© Scientificsentence 2010. All rights reserved.