Contents
Special Relativity
© The scientific sentence. 2010
| Relativity: Schwarzschild metric: Ricci tensors
__________________
R00 = (001) = - [(g11/2)∂1g00][(g00/2)∂1g00] |
(010) = + ∂1[(g11/2)∂1g00]0 |
(011) = + [(g11/2)∂1g00][(g11/2)∂1g11]0 |
(012) = + [(g11/2)∂1g00][(g22/2)∂1g22]0 |
(013) = + [(g11/2)∂1g00][(g33/2)∂1g33]0 |
__________________
R11 = (100) = - [(g00/2)∂1g00][(g00/2)∂1g00] |
(110) = + [(g11/2)∂1g11][(g00/2)∂1g00]0 |
(111) = + ∂1[(g11/2)∂1g11] |
(112) = + [(g11/2)∂1g11][(g22/2)∂1g22]0 |
(113) = + [(g11/2)∂1g11][(g33/2)∂1g33]0 |
(122) = - [(g22/2)∂1g22][(g22/2)∂1g22] |
(133) = - [(g33/2)∂1g33][(g33/2)∂1g33] |
__________________
R22 = (210) = + [(g11/2)∂1g22][(g00/2)∂1g00]0 |
(211) = + [(g11/2)∂1g22][(g11/2)∂1g11]0 |
(212) = + ∂1[(g11/2)∂1g22]0 |
(213) = + [(g11/2)∂1g22][(g33/2)∂1g33]0 |
(221) = - [(g11/2)∂1g22][(g22/2)∂1g22] |
(233) = - [(g33/2)∂2g33][(g33/2)∂2g33] |
__________________
R33 = (310) = + [(g11/2)∂1g33][(g00/2)∂1g00]0 |
(311) = + [(g11/2)∂1g33][(g11/2)∂1g11]0 |
(312) = + [(g11/2)∂1g33][(g22/2)∂1g22]0 |
(313) = + ∂1[(g11/2)∂1g33]0 |
(323) = + ∂2[(g22/2)∂2g33]0 |
(331) = - [(g11/2)∂1g33][(g33/2)∂1g33] |
(332) = - [(g22/2)∂2g33][(g33/2)∂2g33] |
___________________ 64
___________________
|
|