User guide:
add: v1 to v2
subtract: v2 from v1
multiply: v1 by v2
divide: v1 by v2
square: v1
cube: v1
factorial of v1
sqrt: of v1
snell_i: i = arcsin[(n2/n1) sin r]
v1 = n1, v2 = n2, v3 = r
snell_r: r = arcsin[(n1/n2) sin i]
v1 = n1, v2 = n2, v3 = i
deviation: prism
δ = θ - A + arcsin[n sin (A - arcsin (sin θ)/n)]
v1 = θ , v2 = A, v3 = n (that is: n2/n1)
min-dev: prism
δm = 2 θ - A
v1 = θ, v2 = A
index: prism
sin[(δm + A)/2] = n sin (A/2)
v1 = θ , v2 = A
critical:
ic = arcsin(n1/n2)
v1 = n1 , v2 = n2
f-lensmaker:
(n2 - n1)(1/R1 - 1/R2) = n1/ƒ
v1 = n1 , v2 = n2 , v3 = R1, v4 = R2
slab-dev:
δ = h sin θ [1 - (n1/n2) cos θ/ (1 - [(n1/n2)2 sin2 θ])1/2]
v1 = h , v2 = θ , v3 = n1, v4 = n2
rainbow-dev:
i = arcsin [([4 - (n2/n1)2]/3)1/2]
r = arcsin[(n1/n2) sin i]
Δ = 4r - 2i
v1 = n1 , v2 = n2
magnification:
mt = - (L/f0)(250 mm/fe)
v1 = L (often 160 mm), v2 = f0, v3 = fe in mm
optical resolution:
ΔθR = 1.22 λ/ d
v1 = λ (nm), v2 = d (cm)
--
electronic resolution:
ΔθR = 0.15/d E1/2 in nm
v1 = d (cm), v2 = E (eV)
|