Quantum Mechanics
Schrodinger equation
Quantum Mechanics
Propagators : Pg
Quantum Simple Harmonic Oscillator QSHO
Quantum Mechanics
Simulation With GNU Octave
© The scientific sentence. 2010
|
|
Jacobians
Jacobians are very useful to determine the elements of integrals
when transforming them from a system coordinates to another.
1. 1D Jacobian
In 1D problems we are used to a simple change of variables, e.g. from x to u
∫ f(x) dx (a → b ) = ∫ f(x(u)) (dx/du) du ( α → β)
dx/du is one-dimension Jacobian
2. 2D Jacobian
Transformation from (x,y) to (u,v):
∫∫(R) f(x,y) dxdy = ∫∫(R') f(x(u,v),y(u,v)) (∂(x,y)/∂(u,v) dudv
∂(x,y)/∂(u,v) is the 2D Jacobian
∂(x,y)/∂(u,v) =
|∂x/∂u ∂x/∂v|
|∂y/∂u ∂y/∂v|
=
|xu xv |
|yu yv |
= xuyv - xvyu
The Jacobian is the determinant of the Jacobian Matrix
Example:
Area of circle of radius R:
x = r cos θ
y = r sin θ
dxdy → dr dθ
A = ∫∫(S) dxdy = ∫∫(S') (Jacobian)drdθ
Jacobian =
|xr xθ |
|yr yθ |
=
|cos θ -r sinθ |
|sin θ r cos θ |
= r
Thereore:
A = ∫∫ (Jacobian)drdθ =
∫∫ r drdθ = (1/2)R2 2π =
πR2
3. 3D Jacobian
x = x(u, v, w), y = y(u, v, w), and z = z(u, v, w)
Transforms vlume dxdydz to dudvdw.
∫∫∫ (V) f(x,y,z) dxdydz =
∫∫∫ (V')F(u,v,w) ∂(x,y,z)/∂(u,v,w) dudvdw
The Jacobian ∂(x,y,z)/∂(u,v,w) is equal to:
|xu xv xw|
|yu yv yw|
|zu zv zw|
Example:
Transformation of volume elements between Cartesian and spherical polar
coordinate systems: dxdydz → dudvdw = drdθdφ
x = r sinθcosφ
y = r sinθsinφ
x = r cosθ
xu = ∂x/∂r = sinθcosφ
xθ = ∂x/∂θ = r cosθcosφ
xφ = ∂x/∂φ = - r sinθsinφ
....
The Jacobian is:
∂(x,y,z)/∂(u,v,w) =
|sinθcosφ r cosθcosφ - r sinθsinφ|
|sinθsinφ r cosθsinφ r sinθcosφ|
|cosθ - r sinθ 0| =
r2 sin θ
Therefore:
The volume element is:
dV = dxdydz = (Jacobian) drdθdφ =
r2 sin θ drdθdφ
Volume element:
V = dxdydz = (Jacobian) drdθdφ =
r2 sin θ drdθdφ
|
|