Quantum Mechanics
Schrodinger equation
Quantum Mechanics
Propagators : Pg
Quantum Simple Harmonic Oscillator QSHO
Quantum Mechanics
Simulation With GNU Octave
© The scientific sentence. 2010
|
| Time-independent perturbation theory
In perturbation theory, the wavefunctions and energies
for a system are expanded in terms of those for an unperturbed
system having known solutions.
1. Non-perturbed Hamiltonian
Let's suppose that a quantum system has a Hamiltonian H and a
wave function or the state ψ, with an eherhy E. The Schrodinger
equation is then written as: H ψ = E ψ. If the system has "n"
eigenstates |φn> with their corresponding "n"
probilities Pn and "n" enrgies En, the state of the system
can be written as |ψ > = Σ Pn|φn>,
and the time-independendent Schrodinger equation for each
eigenstate is rewritten as: H |φn> = En|φn>.
At first, the system is not perturbed, we write then the
time-independendent Schrodinger equation with "0" indexes as:
H(0) |φ(0)n> = E(0)n|φn>.
To write things simply, let's write |φn> = |n>.
H(0) |n(0)> = E(0)n|n(0)>
2. Perturbed Hamiltonian
Under some perturbation, the Hamiltian of the system takes
the new following form:
H = H(0) + λ H(p), where λ is a dimensionless parameter chosen
to maintain a small perturbation that has a small effect on the
system. Now, the time-independendent Schrodinger equation is:
H |n> = En|n> or [H(0) + λ H(p)]|n> = En|n>
The equation to solve is then:
(H(0) + λ H(p))|n> = En|n> (2.1)
The idea is to develop |n> and its corresponding energy
En as a power series in λ as follows:
En = E(0)n + λ E(1)n + λ2 E(2)n + ... (2.2)
|n> = |n(0)> + λ |n(1)> + λ2 |n(2)> + ... (2.3)
The eigenstates |n> or orthogonal, so:
<n(0)|n> = <n(0)[|n(0)> + λ |n(1)> + λ2 |n(2)> + ... ] =
<n(0)|n(0)> + 0 + 0 + ... = 1 + 0 + 0 + ... = 1.
And
<n(1)|n> = <n(1)[|n(0)> + λ |n(1)> + λ2 |n(2)> + ... ] =
0 + <n(1)|n(1)> + 0 + ... = + 0 + λ + ... = λ
<n(2)|n> = <n(2)[|n(0)> + λ |n(1)> + λ2 |n(2)> + ... ] =
0 + 0 + λ2 <n(2)|n(2)> + 0 + ... = λ2.
Now let's insert the equations (2.2) and (2.3) in the
equatio (2.1).It follows:
(H(0) + λ H(p))[|n(0)> + λ |n(1)> + λ2 |n(2)> + ...] =
[E(0)n + λ E(1)n + λ2 E(2)n + ...][|n(0)> + λ |n(1)> + λ2 |n(2)> + ...]
Developping yields:
H(0)|n(0)> + λ H(0)|n(1)> + λ2H(0) |n(2)>
+ λ H(p)|n(0)> + λ(2) H(p)|n(1)> + λ(3) H(p)|n(2)> + λ2 E(2)n|n(0)> + ...
=
E(0)n|n(0)> + λE(0)n |n(1)> + λ2 E(0)n |n(2)>
+ λ E(1)n|n(0)> + λ2 E(1)n|n(1)> + λ3E(1)n|n(2)> + ...
Equating by the order of λ (order of perturbation), we have:
H(0)|n(0)> = E(0)n|n(0)> (2.4)
H(0)|n(1)> + H(p)|n(0)> = E(0)n |n(1)> + E(1)n|n(0)> (2.5)
H(0)|n(2)> + H(p)|n(1)> = E(0)n |n(2)> + E(1)n|n(1)> +
E(2)n|n(0)> (2.6)
2.1.First order of perturbation
From the equation (2.5) and using the bra <n(0)|, we get:
<n(0)|H(0)|n(1)> + <n(0)|H(p)|n(0)> =
E(0)n <n(0)|n(1)> + E(1)n<n(0)|n(0)>
We find then:
0 + <n(0)|H(p)|n(0)> = 0 + E(1)n
Therefore:
E(1)n = <n(0)|H(p)|n(0)>
First order eigen value
E(1)n = <n(0)|H(p)|n(0)>
From the equation (2.5) and using the bra <m(0)|, we get:
<m(0)|H(0)|n(1)> + <m(0)|H(p)|n(0)> =
E(0)n <m(0)|n(1)> + E(1)n<m(0)|n(0)
We have:
<m(0)|H(0)|n(1)> = E(0)m<m(0)|n(1)>, so:
(E(0)m - E(0)n) <m(0)|n(1)> + <m(0)|H(p)|n(0)> = 0, or:
<m(0)|n(1)> = <m(0)|H(p)|n(0)> /( E(0)n - E(0)m)
Using the relation of the closure: Σ|m(0)><m(0)| = 1, we get:
|n(1)> = Σ <m(0)|H(p)|n(0)>/(E(0)n - E(0)m) |m(0)>
(The sum is over m ≠n)
First order eigenstate
|n(1)> = Σ (m ≠n)[<m(0)|H(p)|n(0)>/
(E(0)n - E(0)m) ]|m(0)>
2.2. Second order of perturbation
From the equation (2.6) and using the bra <n(0)|, we get:
<n(0)|H(0)|n(2)> + <n(0)|H(p)|n(1)> =
E(0)n <n(0)|n(2)> + E(1)n<n(0)|n(1)> + E(2)n<n(0)|n(0)>
That is:
0 + <n(0)|H(p)|n(1)> = 0 + 0 + E(2)n, or:
E(2)n = <n(0)|H(p)|n(1)>
Using the expression of |n(1)>, we find:
E(2)n = <n(0)|H(p)[Σ [<m(0)|H(p)|n(0)> /(E(0)n - E(0)m) ]|m(0)>]
E(2)n = Σ [<m(0)|H(p)|n(0)> /( E(0)n - E(0)m) ] <n(0)|H(p)|m(0)>
E(2)n = Σ [<m(0)|H(p)|n(0)> /( E(0)n - E(0)m) ] <n(0)|H(p)|m(0)>
sum over m ≠n
Second order eigen value
E(2)n = Σ (m≠n)[|<m(0)|H(p)|n(0)>|2/
(E(0)n - E(0)m)]
Now using the bra <m(0)| in the equation (2.6), we find:
<m(0)|H(0)|n(2)> + <m(0)|H(p)|n(1)> =
E(0)n <m(0)|n(2)> + E(1)n<m(0)|n(1)> + E(2)n<m(0)|n(0)>
Therefore:
[E(0)m - E(0)n]<m(0)|n(2)> + <m(0)|H(p)|n(1)> =
E(1)n<m(0)|n(1)> + E(2)n<m(0)|n(0)>
[E(0)n - E(0)m ]<m(0)|n(2)> =
<m(0)|H(p)|n(1)> - E(1)n<m(0)|n(1)> or:
<m(0)|n(2)> = [<m(0)|H(p)|n(1)> - E(1)n<m(0)|n(1)>]/
[E(0)n - E(0)m]
Using the first order results and the relation of
the cloture Σ<m(0)|m(0)> = 1, yields:
<m(0)|n(2)> =
Σ(k≠n)[<m(0)|H(p)|k(0)><k(0)|H(p)|n(0)> /
( E(0)n - E(0)k)(E(0)n - E(0)m)
- [<n(0)|H(p)|n(0)><m(0)|H(p)|n(0)>/(E(0)n - E(0)m)2
Therefore:
|n(2)> =
Σ(m≠n)Σ(k≠n)<m(0)|H(p)|k(0)><k(0)|H(p)|n(0)> /
( E(0)n - E(0)k)(E(0)n - E(0)m)|m(0)>
- Σ(m≠n)<n(0)|H(p)|n(0)><m(0)|H(p)|n(0)> /
(E(0)n - E(0)m)2 |m(0)>
Second order eigenstate
|n(2)> =
Σ(m≠n)Σ(k≠n)<m(0)|H(p)|k(0)><k(0)|H(p)|n(0)> /
( E(0)n - E(0)k)(E(0)n - E(0)m)|m(0)>
- Σ(m≠n)<n(0)|H(p)|n(0)><m(0)|H(p)|n(0)> /
( E(0)n - E(0)m)2 |m(0)>
These standard equations are called Rayleigh-Schrödinger
perturbation theory (RSPT) equations.
|
|