Constants  
 
  Diff. equations  
 
  Hilbert space  
 
  HandS Pictures  
 
  Pauli matrices  
 
  home  
 
  ask us  
 

  CGC  
 
  Units   
 
  Jacobians  
 
  Angular momenta  
 
  Elliptic coordinates  
 

 

Quantum Mechanics



   Schrodinger equation


   Quantum Mechanics



   Propagators : Pg




Quantum Simple Harmonic
Oscillator QSHO




Quantum Mechanics
Simulation With GNU Octave




© The scientific sentence. 2010

Time-independent perturbation theory



In perturbation theory, the wavefunctions and energies 
for a system are expanded in terms of those for an unperturbed 
system having known solutions.

1. Non-perturbed Hamiltonian

Let's suppose that a quantum system has a Hamiltonian H and a 
wave function or the state ψ, with an eherhy E. The Schrodinger 
equation is then written as: H ψ = E ψ. If the system has "n" 
eigenstates |φn> with their corresponding "n" 
probilities Pn and "n" enrgies En, the state of the system 
can be written as |ψ > = Σ Pnn>, 
and the time-independendent Schrodinger equation for each 
eigenstate is rewritten as: H |φn> = Enn>. 

At first, the system is not perturbed, we write then the 
time-independendent Schrodinger equation with "0" indexes as: 

H(0)(0)n> = E(0)nn>.

To write things simply, let's write |φn> = |n>.

H(0) |n(0)> = E(0)n|n(0)>


2. Perturbed Hamiltonian

Under some perturbation, the Hamiltian of the system takes 
the new following form:
H = H(0) + λ H(p), where λ is a dimensionless parameter chosen 
to maintain a small perturbation that has a small effect on the 
system. Now, the time-independendent Schrodinger equation is: 
H |n> = En|n>  or [H(0) + λ H(p)]|n> = En|n>

The equation to solve is then:

(H(0) + λ H(p))|n> = En|n>    (2.1)

The idea is to develop |n>  and its corresponding energy 
En as a power series in λ as follows:

En =  E(0)n + λ E(1)n + λ2 E(2)n + ...    (2.2)

|n>  = |n(0)> + λ |n(1)> + λ2 |n(2)> + ...    (2.3)

The eigenstates |n> or orthogonal, so:

<n(0)|n> = <n(0)[|n(0)> + λ |n(1)> + λ2 |n(2)> + ... ]  = 
<n(0)|n(0)> + 0 + 0 + ... = 1 + 0 + 0 + ... = 1.
And
<n(1)|n> = <n(1)[|n(0)> + λ |n(1)> + λ2 |n(2)> + ... ]  = 
0 + <n(1)|n(1)> + 0 + ... =  + 0 + λ + ... = λ


<n(2)|n> = <n(2)[|n(0)> + λ |n(1)> + λ2 |n(2)> + ... ]  = 
0 + 0 + λ2 <n(2)|n(2)> + 0 + ... =  λ2.

Now let's insert the equations (2.2) and (2.3) in the 
equatio (2.1).It follows:
(H(0) + λ H(p))[|n(0)> + λ |n(1)> + λ2 |n(2)> + ...] = 
[E(0)n + λ E(1)n + λ2 E(2)n + ...][|n(0)> + λ |n(1)> + λ2 |n(2)> + ...]

Developping yields:

H(0)|n(0)> + λ H(0)|n(1)> + λ2H(0) |n(2)> 
+ λ H(p)|n(0)> + λ(2) H(p)|n(1)> + λ(3) H(p)|n(2)> + λ2 E(2)n|n(0)> + ...
= 
E(0)n|n(0)> + λE(0)n |n(1)> + λ2 E(0)n |n(2)>
+ λ E(1)n|n(0)> + λ2 E(1)n|n(1)> + λ3E(1)n|n(2)> + ...

Equating by the order of λ (order of perturbation), we have:

H(0)|n(0)> =  E(0)n|n(0)>    (2.4)
H(0)|n(1)> + H(p)|n(0)> = E(0)n |n(1)> + E(1)n|n(0)>   (2.5)
H(0)|n(2)> + H(p)|n(1)> = E(0)n |n(2)> + E(1)n|n(1)> + 
E(2)n|n(0)>   (2.6)

2.1.First order of perturbation

From the equation (2.5) and using the bra <n(0)|, we get:
<n(0)|H(0)|n(1)> + <n(0)|H(p)|n(0)> = 
E(0)n <n(0)|n(1)> + E(1)n<n(0)|n(0)>
We find then:
0 + <n(0)|H(p)|n(0)> = 0 + E(1)n
Therefore:
E(1)n = <n(0)|H(p)|n(0)>

First order eigen value
E(1)n = <n(0)|H(p)|n(0)>


From the equation (2.5) and using the bra <m(0)|, we get:
<m(0)|H(0)|n(1)> + <m(0)|H(p)|n(0)> = 
E(0)n <m(0)|n(1)> + E(1)n<m(0)|n(0)

We have:
<m(0)|H(0)|n(1)> = E(0)m<m(0)|n(1)>, so:

(E(0)m - E(0)n) <m(0)|n(1)> + <m(0)|H(p)|n(0)> = 0, or: 
<m(0)|n(1)> = <m(0)|H(p)|n(0)> /( E(0)n - E(0)m)
Using the relation of the closure: Σ|m(0)><m(0)| = 1, we get: 
|n(1)> = Σ <m(0)|H(p)|n(0)>/(E(0)n - E(0)m) |m(0)>
(The sum is over m ≠n)

First order eigenstate
|n(1)> = Σ (m ≠n)[<m(0)|H(p)|n(0)>/
(E(0)n - E(0)m) ]|m(0)>

2.2. Second order of perturbation

From the equation (2.6) and using the bra <n(0)|, we get:

<n(0)|H(0)|n(2)> + <n(0)|H(p)|n(1)> = 
E(0)n <n(0)|n(2)> + E(1)n<n(0)|n(1)> + E(2)n<n(0)|n(0)>
That is:
0 + <n(0)|H(p)|n(1)> = 0 + 0 + E(2)n, or:
E(2)n = <n(0)|H(p)|n(1)>

Using the expression of |n(1)>, we find: 
E(2)n = <n(0)|H(p)[Σ [<m(0)|H(p)|n(0)> /(E(0)n - E(0)m) ]|m(0)>]

E(2)n = Σ [<m(0)|H(p)|n(0)> /( E(0)n - E(0)m) ] <n(0)|H(p)|m(0)>

E(2)n = Σ [<m(0)|H(p)|n(0)> /( E(0)n - E(0)m) ] <n(0)|H(p)|m(0)>
sum over m ≠n

Second order eigen value
E(2)n = Σ (m≠n)[|<m(0)|H(p)|n(0)>|2/
(E(0)n - E(0)m)] 


Now using the bra <m(0)| in the equation (2.6), we find:

<m(0)|H(0)|n(2)> + <m(0)|H(p)|n(1)> = 
E(0)n <m(0)|n(2)> + E(1)n<m(0)|n(1)> + E(2)n<m(0)|n(0)>
Therefore:
[E(0)m - E(0)n]<m(0)|n(2)> + <m(0)|H(p)|n(1)> = 
E(1)n<m(0)|n(1)> + E(2)n<m(0)|n(0)>


[E(0)n - E(0)m ]<m(0)|n(2)> = 
<m(0)|H(p)|n(1)> - E(1)n<m(0)|n(1)>  or:
<m(0)|n(2)> = [<m(0)|H(p)|n(1)> - E(1)n<m(0)|n(1)>]/
[E(0)n - E(0)m]

Using the first order results and the relation of 
the cloture Σ<m(0)|m(0)> = 1, yields:

<m(0)|n(2)> = 
Σ(k≠n)[<m(0)|H(p)|k(0)><k(0)|H(p)|n(0)> /
( E(0)n - E(0)k)(E(0)n - E(0)m)
 - [<n(0)|H(p)|n(0)><m(0)|H(p)|n(0)>/(E(0)n - E(0)m)2 

Therefore:
|n(2)> = 
Σ(m≠n)Σ(k≠n)<m(0)|H(p)|k(0)><k(0)|H(p)|n(0)> /
( E(0)n - E(0)k)(E(0)n - E(0)m)|m(0)>
 - Σ(m≠n)<n(0)|H(p)|n(0)><m(0)|H(p)|n(0)> /
 (E(0)n - E(0)m)2 |m(0)>
 
Second order eigenstate
|n(2)> = 
Σ(m≠n)Σ(k≠n)<m(0)|H(p)|k(0)><k(0)|H(p)|n(0)> /
( E(0)n - E(0)k)(E(0)n - E(0)m)|m(0)>
 - Σ(m≠n)<n(0)|H(p)|n(0)><m(0)|H(p)|n(0)> /
 ( E(0)n - E(0)m)2 |m(0)>
 
 These standard equations are called Rayleigh-Schrödinger 
 perturbation theory (RSPT) equations.
  


chimie labs
|
Physics and Measurements
|
Probability & Statistics
|
Combinatorics - Probability
|
Chimie
|
Optics
|
contact
|


© Scientificsentence 2010. All rights reserved.