Constants 
 
  Units  
 
  Photoelectric effect  
 
  LET  
 
  Moseley's law  
 
  Bohr's atom  
 
  home  
 
  ask us  
 

Projectile's charge Z Projectile's E (MeV)
 


Contents


The nucleus

Radioactivity


Radiation Measurements


Black body radiation


Statistical Mechanics


Radiation and scattering


Related topics


Related links




© The scientific sentence. 2010



Statistical Mechanics



β = 1/κT

Using Classical Mechanics, the average energy for an oscillator is :
< E > = κT
< E > = < (1/2)mv2 > + < (1/2)κx2> = (1/2)κT + (1/2)κT = κT

< E > = κT

Using Statistical Mechanics, we can write:
< E > = Σ ni Ei = NΣ Ei exp[- βEi]/Z = (N/Z)Σ Ei exp[- βEi]= N ΣEi P(Ei)

   "i" is the ith level
P(Ei) = exp[-βEi]/ Z
Z = iΣ0 → ∞ exp[-βEi] = 1/β


Where: P(Ei) is the probability for ni particles in the level "i" to have the energy Ei. The sum is related to all the states "i".

The normalization of this probability can be written as:
Σ P(Ei) = 1. or : ∫ dE P(E)= 1 [from: 0 → ∞]
∫ dE P(E) = (1/Z)∫ dE exp[- βE] = (1/Z)[- 1/β]exp[- βE](From: 0 → ∞)= β/Z = 1
Thus:
β = 1/Z    
We can write:
P(Ei) = β exp[- βE]    

We have:
< E > = Σ Ei P(Ei) = Σ Ei exp[- βEi]/Z = (1/Z)∫ E exp[- βE]dE

∫ x exp[-β x] dx = (1/β2) ∫ y exp[- y ]dy
Where y = β x
By part;
∫ y exp[- y ]dy; = - y exp [- y] - exp [- y] = - (y + 1)exp[- y]
(form : 0 → n, n is the number of states). We take n large, then:

∫ y exp[- y ]dy = [- (y + 1)exp[- y]] [: 0 → n] = 1

Hence:
∫ x exp[-β x] dx = 1/β2, and < E > = 1/Z . β2
We have then: < E > = 1/β
And: < E > = 1/β = κT. Hence:
β = 1/κT

The relationship for the probability becomes:
P(Ei) = (1/κT) exp[- E/κT]    



Google
  Web ScientificSentence
 


© Scientificsentence 2010. All rights reserved.