Constantes 
 
  Compresseurs  
 
  Turbines  
 
  Cycles  
 
  Gas Parfaits  
 
  Applications  
 
  Units  
 
  Calculette  
 
  ask us  
 

 

Classical Thermodynamics


Statistical Thermodynamics


Search a word:
   



© The scientific sentence. 2010

Thermodynamic beta
   
     
   

Thermodynamics

 
Statistical Thermodynamics
   
 
Thermodynamic beta
 


β & κT


Classical Mechanics 
< E > = κT
But Quantum Mechanics shows that the average energy
depends on the temperature.

< E > = < (1/2)mv2 > + < (1/2)κx2> = 
(1/2)κT + (1/2)κT = κT 

< E > = κT 

< E > = Σ ni Ei = 
N Σ Ei exp[- βEi]/Z = 
(N/Z)Σ Ei exp[- βEi]=  N ΣEi P(Ei)

   "i" is the ith level
P(Ei) = exp[-βEi]/ Z
Z = iΣ0→∞ exp[-βEi] = 1/β

Where: P(Ei) is the probability for ni particles in the level "i" to have the energy Ei. The sum is related to all the states "i". The normalization of this probability can be written as: Σ P(Ei) = 1. or : ∫ dE P(E)= 1 [from: 0 → ∞] ∫ dE P(E) = (1/Z)∫ dE exp[- βE] = (1/Z)[- 1/β]exp[- βE](From: 0 → ∞)= β/Z = 1 Thus: β = 1/Z     (2.) We can write:
P(Ei) = β exp[- βE]     (3.) We have: < E > = Σ Ei P(Ei) = Σ Ei exp[- βEi]/Z = (1/Z)∫ E exp[- βE]dE ∫ x exp[-β x] dx = (1/β2) ∫ y exp[- y ]dy Where y = β x By part; ∫ y exp[- y ]dy; = - y exp [- y] - exp [- y] = - (y + 1)exp[- y] (form : 0 → n, n is the number of states). We take n large, then
∫ y exp[- y ]dy = [- (y + 1)exp[- y]] [: 0 → n] = 1 It follows that: ∫ x exp[-β x] dx = 1/β2, and < E > = 1/Z . β2 From the equation (2.), we have : < E > = 1/β From the equation (1.), we get: < E > = 1/β = κT Foretheremore, β = 1/κT The relationship (3. ) becomes:
P(Ei) = (1/κT) exp[- E/κT]     (4.)

 

 

Top

  
Google
Web
ScientificSentence
 




chimie labs
|
scientific sentence
|
java
|
php
|
green cat
|
contact
|


© Scientificsentence 2009. All rights reserved.