Constants  
 
  Units   
 
  Jordan's lemma   
 
  Delta function  
 
  Young's Modulus  
 
  Fourier Transforms  
 
  home  
 
  ask us  
 

 
Contents

A sigle wave


Superposition of waves



© The scientific sentence. 2010

Single slit diffraction



Intensity distribution



The slit of width "a" is divided into an infinite elementary slits "dy". Each "dy" correspond to the elementary electric field dE. We will add all these dE over the range [-a/2, +a/2] to find the resultant field E at a point on the screen; then we square its amplitude to find its intensity at this point.

If Ec, the amplitude of the electric field of the wave emerging from the center of the slit, is uniformly distributed along "y", we can write at y = y on the screen:
dE = Ec (dy/a) sin (ωt + φ). φ is the phase difference between the wave from y = 0 and from y.
We have:
2π/φ = λ/y sin θ, thus: φ = (2 π/λ) y sin θ Then: dy = dφ (λ/2 π sin θ), and
dE = Ec [ (λ/2 π sin θ)/a] sin (ωt + φ) dφ

Let's write:
β = π a sin θ/λ, thus:
dE = (Ec /2 β) sin (ωt + φ) dφ

If "y" varies from: -a/2 to +a/2, then φ varies from: - β to + β
We have then:
E = ∫ dE = ∫ (Ec/a) sin (ωt + φ) dy from -a/2 to +a/2
= ∫ (Ec /2 β) sin (ωt + φ) dφ from: - β to + β

We have the following trigonometric identity:
sin (ωt + φ) = sin ωt cos φ + cos ωt sin φ
Thus:
E = (Ec /2 β) [sin ωt ∫ cos φ dφ + cos ωt ∫ sin φ dφ] from: - β to + β
= (Ec /2 β) [sin ωt (sin φ) + cos ωt (- cos φ)] from: - β to + β
= (Ec /2 β) [sin ωt (2 sin β) + cos ωt (0)] = (Ec / β) sin β sin ωt
Thus:
I = (1/2)cεo E2 = (1/2)cεo(Ec2) sin2 β / β2 = Ic sin2 β / β2
With Ic = (1/2)cεo(Ec2)

Finally:
I = Ic sin2 β / β2
Ic = (1/2)cεo(Ec2),
β = (π a/λ) sin θ






©: The scientificsentence.net. 2007.


  
Google
Web
ScientificSentence
 



chimie labs
|
scientific sentence
|
java
|
Perl
|
php
|
green cat
|
contact
|


© Scientificsentence 2010. All rights reserved.