trinome   
 
  Conversions    
 
  Probabilités    
 
  sur le stress   
 
  Units   
 
  home  
 
  ask us  
 

 

Mathématiques
2




© The scientific sentence. 2010


Mathématiques 2: Fonctions exponetielles



1. f(x) = - 3 log3((x - 2)/2) + 1

Domain :
(x - 1)/2 > 0 → x > 1

f(x) = 0 si log3((x - 2)/2) = 1/2
c'est à dire (x - 2)/2 = 31/2
x = 2 x 31/2 + 2

Utiliser la formule de changement de base:

loga(x) = logb(x)/logb(a)

donc

loga (x) = loge (x)/loge(a) ou

loga (x) = ln(x)/ln(a)

f(x) = - 3 [ln((x - 2)/2)]/ln(3) + 1

Graphe:





2. log2(x) = 5

log2(x) = 5
x = 25 = 32



3. 3 ln(3 x - 2) - 2 = - 7

3 ln(3 x - 2) = - 5

ln(3 x - 2) = - 5/3
3 x - 2 = e- 5/3

x = [e- 5/3 + 2]/3



4. log6(2x - 1) + 2 log6 - log6(3x - 2) = 3

log6(2x - 1) + log62 - log6(3x - 2) = 3
log6[(2x - 1) . 62 . (3x - 2)] = 3
[(2x - 1) . 62 . (3x - 2)] = 63
(2x - 1) . (3x - 2) = 6
6 x2 - 7 x + 2 = 6
6 x2 - 7 x - 4 = 0

Δ = (- 7)2 - 4 (6)(- 4) = 49 + 96 = 145

Deux solutions:

x1 = (7 - 12.04)/12 = - 0.42
x2 = (7 + 12.04)/12 = 1.59



5. 4log4(2x) = x + 1

4log4(2x) = x + 1
(2x) = x + 1

x = 1



6. log5(2x - 5) - 4 ≥ 3

log5(2x - 5) ≥ 7
(2x - 5) ≥ 57

x≥ [57 + 5]/2



7. 3 log5(2x3/k)

x = 3.4
k = 1.2

y = 3 log5(2x3/k) =
3 [log5(2x3) - log5(k)] =
3 [log5(2) + 3log5(x)) - log5(k)] =
3 log5(2) +9 log5(x) - 3 log5(k)
3 log5(2) + 9 (3.4) - 3 (1.2)

log5(2) = log10(2)/log10(5) = = ln(2)/ln(5)

y = 3 ln(2)/ln(5) + 9 (3.4) - 3 (1.2) =
3 x 0.69 /1.61 + 9 (3.4) - 3 (1.2) = 1.29 + 30.6 - 3.6 = 28.29

y = 28.29



8. logx((5kx)3)

x = 3.4
k = 1.2

y = logx((5kx)3) =
3 logx(5kx) = 3 [logx(5) + logx(k) + logx(x)] =
3 [logx(5) + logx(k) + 1]

logx(X) = ln(X)/ln(x)

y = 3 [log3.4(5) + log3.4(1.2) + 1] =
3 [ln(5)/ln(3.4) + ln(1.2)/ln(3.4) + 1] =
3 [1.61/1.22) + 0.18/1.22 + 1] = 3 [1.32 + 0.15 + 1] = 7.41

y = 7.41



8. f(x) = 4 ln(5x - 10) + 1

f(x) = 4 ln(5x - 10) + 1
y = 4 ln(5x - 10) + 1
y - 1 = 4 ln(5x - 10)
(y - 1)/4 = ln(5x - 10)
e(y - 1)/4 = eln(5x - 10) = 5x - 10
e(y - 1)/4 = 5x - 10
e(y - 1)/4 + 10 = 5x
x = [e(y - 1)/4 + 10]/5

La fonction réciproque de f(x) est g(x) telle que:
g(x) = [e(x - 1)/4 + 10]/5








  


chimie labs
|
Physics and Measurements
|
Probability & Statistics
|
Combinatorics - Probability
|
Chimie
|
Optics
|
contact
|


© Scientificsentence 2010. All rights reserved.