Stirling's approximation
1. Stirling's approximation
n! = 1 x 2 x 3 x ... x n
ln n! = ln 1 + ln 2 + ln 3 + ... + ln n
= ∑ ln k [k: 1 → n] ≈ ∫ ln x dx [1 → n]
Since : ∫ ln x = xln x - x,
we have:
ln n! = xln x - x [1 → n] = n ln n - n + 1
N is large ⇒ n + 1 ≈ n. It follows:
ln n! ≈ n ln n - n
Stirling's approximation
ln (nne-n) = n ln n - n
2. Stirling's series
Stirling's series
Factorial function is defined by Gamma function as:
n! = γ(n+1) = ∫ xn e-x dx [x:0 → ∞]
Let's take the derivative of ln (xn e-x). We have:
d[ln (xn e-x)]/dx = d[n ln x - x] - n/x -1
Then the expression ln (xn e-x) is important near
x = n. Let's write x = n + ε, where ε << n. It follows:
ln (xn e-x) = n ln (n + ε) - (n + ε)
Using the expansion of ln (1 + ξ) = ξ - ξ2/2 +
ξ3/3 - ... + (-1)n+1ξn/n
= ∑ (-1)n+1ξn/n [1 → ∞]; we get:
ln (xn e-x) = n ln [n (1 + ε/n)] - (n + ε)
= n ln n + n ln (1 + ε/n) - n - ε =
n ln n + nε/n - n(ε/n)2/2 + ... - n - ε
= n ln n - n - (ε)2/2n + ...
Hence:
xn e-x ≈ nne-ne- (ε)2/2n
= nne-ne- (ε)2/2n
Then:
n! = ∫ xn e-x dx [x: 0 → ∞] =
∫ nne-ne- (ε)2/2n dε [ε: -n → ∞]
≈ nne-n∫e- (ε)2/2n dε [ε: - ∞ → + ∞]
We have:
∫e- (ζ)2/2n dζ [ζ : - ∞ → + ∞]
= (2πn)1/2
Then:
n! ≈ nne-n (2πn)1/2
= (2π)1/2 nn+1/2e-n
Let's take the ln:
ln n! ≈ n ln n - n + (1/2) ln (2πn) = (n+1/2) ln n - n +(1/2) ln (2π)
Stirling's formula
ln n! ≈ n ln n - n + (1/2) ln (2πn)
ln n! ≈ (n+1/2) ln n - n + (1/2) ln (2π)
With large n, The above expression reduces to Stirling's approximation:
Stirling's approximation
ln n! ≈ n ln n - n
|